富阳永明热镀锌有限公司退役场地 环境初步调查报告

编制单位:浙江天川环保科技有限公司编制日期:2019年11月 项目负责人:杨玉峰

责任表

项目名称: 富阳永明热镀锌有限公司退役场地环境初步调查 报告

编制机构名称:浙江天川环保科技有限公司

机构法定代表人: 葛海泉

项目负责人: 杨玉峰

报告编制人: 石冬瑾、邸文瑞

报告审核人: 胡晓东、葛海泉

目 录

一,	前言	. 1
	1.1 项目背景及调查目的	. 1
	1.2 调查程序	.2
	1.3 调查范围	.2
_,	编制依据	.5
	2.1 相关法律法规	.5
	2.2 相关标准	.5
	2.3 相关技术导则	.6
	2.4 相关技术规范	.6
	2.5 其他材料	.6
三、	场地环境初步调查及污染识别	.7
	3.1 场地所在区域环境概况	.7
	3.2 场地基本情况及现状调查	2
	3.3 场地历史情况调查1	
	3.4 场地周边现状及历史调查2	
	3.5 场地利用的规划	
	3.6 场地内原有生产情况调查	
	3.7 场地内泄露和污染事故调查	
	3.8 场地水文地质调查	
	3.9 污染初步识别	
四、		
	4.1 布点依据	
	4.2 布点位置及数量	
	4.3 采样深度及采样方式	
	4.4 监测项目	15
五、	现场采样和实验室分析4	١7
	5.1 现场探测方法和程序	l 7
	5.2 采样方法和程序4	
	5.3 实验室分析	
	5.4 质量保证和质量控制	14
六、	监测结果分析与评价)2
	6.1 评价标准)2
	6.2 检测结果	
	6.3 结果分析和评价11	3
七、	结论和建议11	7
	7.1 结论11	7
	7.2 建议11	8
	7.3 不确定性说明11	8

- 附图 1 场地地理位置图
- 附图 2 富春湾新城规划图
- 附图 3 原污水站各构筑物的布置图
- 附图 4 工程地质剖面图及土层分布图
- 附件 1 营业执照
- 附件2 环评批复
- 附件 3 三同时验收意见
- 附件4环保监察(督察)意见
- 附件 5 富阳永明热镀锌有限公司退役场地环境初步调查监测方案专家咨询 意见
 - 附件 6 监测方案专家咨询意见修改说明
 - 附件 7 现场踏勘记录表
 - 附件 8 人员访谈记录
 - 附件9 土壤和地下水现场采样记录单
 - 附件10样品流转单
 - 附件 11 检测单位资质证书及检测能力
 - 附件 12 土壤和地下水检测报告
 - 附件13 土壤和地下水检测质控报告
 - 附件 14 初步调查报告评审会签到单及专家评审意见
 - 附件 15 初步调查报告专家评审意见修改说明

一、前言

1.1 项目背景及调查目的

富阳永明热镀锌有限公司退役场地位于杭州市富阳区灵桥镇环镇西路 1 号,公司成立于 2003 年,占地面积 19000 平方米,大门经纬度: 120.022922°、30.022141°,行业类别为 3360 金属表面处理及热处理加工,2006 年 6 月开始在场地内进行试生产。公司于 2017 年底停止在该地块上的生产活动,2018 年初厂房和生产设施拆除。目前地块已被杭州富阳富春湾新城建设投资集团有限公司收储,根据富阳区富春湾新城规划,该地块规划为商业工业混合用地(M/B)。

2018年该地块列入杭州市富阳区重点行业企业用地调查信息采集停产地块 名单内,地块编码为3301112330153,根据地块信息采集的结果,风险筛查分值 较高,为高度关注地块。根据《中华人民共和国土壤污染防治法》第五十九条: 对土壤污染状况普查、详查和监测、现场检查表明有土壤污染风险的建设用地地 块,地方人民政府生态环境主管部门应当要求土地使用权人按照规定进行土壤污 染状况调查。

浙江天川环保科技有限公司受富阳永明热镀锌有限公司委托,对场地开展环境初步调查,按照《场地环境调查技术导则》(HJ 25.1-2014)、《场地环境监测技术导则》(HJ 25.2-2014)、《建设用地土壤环境调查评估技术指南》(环境保护部2017年12月)等技术导则的要求,在资料收集、人员走访、现场踏勘等工作的基础上,编制了该地块的场地环境初步调查监测方案,于2019年5月9日通过了专家咨询会议。江苏实朴检测服务有限公司受浙江天川环保科技有限公司的委托,根据监测方案的内容,于2019年05月10日进行了12个土壤点位(场地内重点区域9个点位,一般区域2个点位,对照点1个点位)的现场钻探和样品采集,并出具检测报告及质控报告(报告编号: SEP/NJ/E1905133),土壤检测结果表明土壤样品中的检出浓度均未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值:由于地块历史上发生过废水渗漏及废气无组织排放的环境违法行为,在第一次土壤点位的基础上,在重点区域原煤气发生炉处增加1个土壤点位,在一般区域增加7个土壤点位,场地内布设3个地下水井,场地外布设1个地下水井,并增加煤气发生炉焦化过程中可能

产生的氰化物、苯酚为特征污染物,上海实朴检测技术服务有限公司于2019年09月21日~25日进行了土壤和地下水点位的现场钻探和样品采集,并出具检测报告及质控报告(报告编号: SEP/SH/E1909965)。根据初步调查检测结果,场地内土壤监测点位中各项指标的检测结果均未超过《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值,该地块不属于污染地块,无需开展场地环境详细调查及风险评估工作。场地内地下水监测点位各项指标均满足《地下水质量标准》(GB14848-2017)中III类水质标准。

1.2 调查程序

本次调查的程序为《场地环境调查技术导则》(HJ 25.1-2014)中第一阶段 及第二阶段的初步采样分析,主要内容如下:

1.2.1 第一阶段——污染识别与责任评价

第一阶段场地环境调查是以资料收集、现场踏勘和人员访谈为主的污染识别及环境责任明确阶段。通过调查退役厂区的生产工艺、原辅材料使用、生产车间布置、工业固废等情况,定性分析污染环节、污染因子和污染区域。

1.2.2 第二阶段——初步采样分析

第二阶段场地环境调查是以采样与分析为主的污染证实阶段,若第一阶段场地环境调查表明场地内或周围区域存在可能的污染源,如化工厂、农药厂、冶炼厂、加油站、化学品储罐、固体废物处理等可能产生有毒有害物质的设施或活动;以及由于资料缺失等原因造成无法排除场地内外存在污染源时,作为潜在污染场地进行第二阶段场地环境调查,确定污染物种类、浓度(程度)和空间分布。第二阶段的初步采样分析包括制定工作计划、现场采样、数据评估和结果分析等步骤。根据初步采样分析结果,如果污染物浓度均未超过国家和地方等相关标准以及清洁对照点浓度(有土壤环境背景的无机物),并且经过不确定性分析确认不需要进行进一步调查后,第二阶段场地环境调查工作可以结束,否则认为可能存在环境风险,须进行详细调查。

该地块场地调查工作流程见图 1-1。

1.3 调查范围

本次调查范围是富阳永明热镀锌有限公司场地内。

图 1-2 本次调查范围 (厂区红线内)

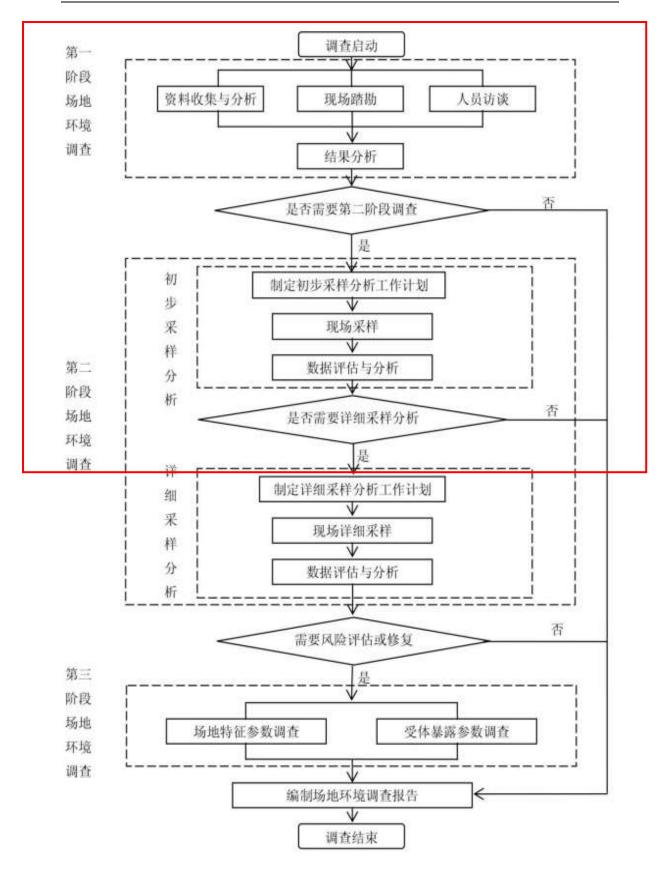


图 1-1 该地块场地调查工作程序(第一阶段及第二阶段初步采样分析)

二、编制依据

2.1 相关法律法规

- 1. 《环境保护部、工业和信息化部、国土资源部、住房和城乡建设部关于保障工业企业场地再开发利用环境安全的通知》(环发〔2012〕140号)
- 2. 《环境保护部关于加强工业企业关停搬迁及原址场地再开发利用过程中污染防治工作的通知》(环发[2014]66号)
 - 3.《中华人民共和国环境保护法》, 2015年;
 - 4. 《中华人民共和国水污染防治法》,2017年;
 - 5. 《中华人民共和国固体废物污染环境防治法》,2016年;
 - 6. 《国务院关于印发土壤污染防治行动计划的通知》(国发[2016]31号);
- 7. 《污染地块土壤环境管理办法(试行)》(环保部令 第 42 号), 2017年:
- 8. 关于发布《建设用地土壤环境调查评估技术指南》的公告(环境保护部公告 2017 年 第 72 号);
- 9. 《中华人民共和国土壤污染防治法》(2018 年 8 月 31 日第十三届全国 人民代表大会常务委员会第五次会议通过);
- 10 关于印发《环境保护部落实<土壤污染防治行动计划>重点工作实施方案》的通知,环办土壤函[2016]2277号;
 - 11《浙江省土壤污染防治工作方案》(浙政发[2016]47号);
- 12 浙江省环境保护厅 浙江省财政厅 浙江省国土资源厅 浙江省农业厅 浙 江省卫生和计划生育委员会关于印发《浙江省土壤污染状况详查实施方案》的 通知(浙环发[2017]43 号)
 - 12.《浙江省污染地块开发利用监督管理暂行办法》(浙环发[2018]7号):

2.2 相关标准

- 1.《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018);
 - 2. 《地下水质量标准》(GB/T 14848-2017);
 - 3. 《地表水质量标准》 (GB3838-2002)。

2.3 相关技术导则

- 1. 《场地环境调查技术导则》(HJ25.1-2014);
- 2. 《场地环境监测技术导则》(HJ25.2-2014);
- 3. 《污染场地风险评估技术导则》(HJ25.3-2014);
- 4. 《污染场地土壤修复技术导则》(HJ25.4-2014);
- 5. 《浙江省污染场地风险评估技术导则》(DB33/T 892-2013)。

2.4 相关技术规范

- 1. 《土壤环境监测技术规范》(HJ/T 166-2004);
- 2. 《地下水环境监测技术规范》(HJ/T 164-2004);
- 3. 《地下工程防水技术规范》(GB50108-2008);
- 4. 《岩土工程勘察规范》(GB50021-2001)。

2.5 其他材料

- 1. 《富阳永明热镀锌有限公司年加工 3 万吨热镀锌件技改项目环境影响报告书》,浙江工业大学,2008 年 12 月;
- 2. 《富阳永明热镀锌有限公司年加工 3 万吨热浸镀锌件技改项目"三同时" 竣工验收监测与评价报告》,富环监验[2009]228 号,富阳市环境保护监测站,2009 年 12 月 23 日;
- 3.《飞旋科技 5500 台磁悬浮高速机电项目岩土工程勘察报告》, 苏州大地勘察工程有限公司, 2018 年 11 月。

三、场地环境初步调查及污染识别

3.1 场地所在区域环境概况

3.1.1 地理位置

富阳永明热镀锌有限公司退役场地位于杭州市富阳区灵桥镇环西路 1 号, 富阳区位于浙江省西北部,北纬 29°44′~30°11′,东经 119°25′~120°09′,东接萧 山区,南连诸暨市,西邻桐庐县,北与临安、余杭区接壤,东北与杭州市西湖 区毗连。320 国道穿越全境,市境东西长 69.7 公里,南北宽 49.7 公里,市域总 面积 1829.8 平方公里。

3.1.2 气象特征

富阳属中纬亚热带地区,气候温和,雨量充沛。年平均气温 16.1° C,无霜期 230d 左右。最热月(七月)平均气温 28.7° C(1996年8月4日,最高温度 40.2° C);最冷月(一月)平均气温 3.6° C(1997年1月5日,最低气温- 14.4° C)。多年平均降水量 1501.1mm,降水量分配不均,大部分集中在 4-9 月份,占全年降水量 68%,多年水面蒸发量 800° 900mm。

富阳四季明显,冬季比较寒冷干燥,春季气温回升,一般 5—6 月降雨量比较多,形成"梅雨季",常常造成洪涝。7—8 月份,天气炎热,降雨量少,蒸发量大,常常出现伏旱。秋季比较稳定,但常有台风影响,如遇台风侵袭,会造成第二次洪涝灾害。

杭州市富阳区主导风向为 NW-NNW, 年平均风速为 1.7m/s, 由于项目用地范围内地势平坦, 周围无遮挡, 因此, 大气扩散能力良好。

3.1.3 地形地貌

杭州市富阳区地形地貌属浙西北中山丘陵区,地势自西南向东北倾斜。富春江将全市分为东南和西北两部分。东南部由龙门山脉组成,地势高;西北部由天目山余脉组成,为山势低缓、谷地较宽的丘陵。经勘探揭露,场地属于全新统滨海相沉积地层。在已控制 10.72m 深度范围内,按其古地理沉积环境和土层的地质特征,可将地基自上而下划分为四大亚层。其中表部层(1)耕植土,灰-灰黄色,软塑、松散、湿度饱和,含水量高,浙亚粘土性,含大量的植物根

基及腐殖质和少量碎石等。该层厚度一般在 0.4~0.5m 间,密实性差,不宜利用。土壤分红壤、黄壤、石灰岩土、潮土、水稻土,并以红壤为主。其下普遍分布力学性质一般的层(2a) 粉质粘土(软塑+)、层(2b)砂质粉土(可塑)、层(2c)粉质粘土(可塑),该三层厚度均较薄,仅在 0.6~0.95m、0.3~0.8m、0.7~1.5m,其中除层(2a)及层(2b)力学强度相对尚好外[S9 孔缺失层(2b)],层(2c)呈软塑状,静探平均比贯入阻力 Ps 值在 550~700kpa 之间并夹有较多的有机质及松散状粗质砂土。尤其底部分布一层厚度在 0.5~0.7m 的层(2d)含碳化质粘土,灰黑~黑色,流塑,含大量的有机质及碳化质,静探平均比贯入阻力 Ps 值仅为 200~400kpa,呈透镜状。下卧层(3)为厚度较大的高压缩性淤泥质土[除(3a)淤质粉土力学强度尚好外],其灵敏度高,极易压缩变形。

3.1.4 水文特征

富阳区境内共分布有一江十溪以及 151 座水库,均属钱塘江水系。主要河流有一江十溪。一江是指富春江,十溪为: 渌渚江、壶源溪、上里溪、龙门溪、青云浦、新桥江、大源溪、小源溪、渔山溪、常绿溪。十溪中九溪流入富春江,常绿溪经萧山流入浦阳江。场地周边地表水为小源溪,位于富春江和大源溪的流域范围内。富春江和大源溪主要特征见下表。

编号	溪流 名称	主流 长度 (km)	集雨面 积(km²)	主要特征
1	富春江	83	1733	富春江由西南向东北斜贯市境,江面宽 700-1000m,水面面积约 7.2 万亩,多年平均过境水量约 33600m³。富阳镇以上集雨面积 37590km²。境内长度约 52km。市以上的集雨面积为 37590km²,过境水量丰富,多年平均过境水量达336 亿 m²,多年平均下泄流量为 962m³/s 富春江在下游东江嘴与浦阳江汇合后改称钱塘江。江水水位水质除受降水、上游水库放水影响外,还受潮汐影响。
2	大源溪	22.9	112.3	大源溪是富春江的重要支流,发源于大源镇新建村,经新 关、大源,于灵桥镇的王家宕村同发源于礼源的小源溪汇 合流入富春江。

表 3-1 富阳区主要河流特征一览表

3.1.5 土壤植被

根据富阳区第二次土壤普查结果,全市主要有红壤、黄壤、石灰岩土、潮

土和水稻土等 5 个大类,12 个亚类,35 个土属,83 个土种。其中以红壤为主,占 91%,分布于海拔 200~500 米以下的丘陵地; 黄壤占 1.3%,分布于 600~700 米以上的中低山; 石灰岩土占 2.4%,分布于岩溶丘陵区; 水稻土占 5.1%,分布于平原谷地; 其余为潮土,占 0.2%。山地土壤的成土母质以沉积岩、火成岩等多种岩石风化而成的残积体和坡积物为主,受地形、母质、气候的影响,有较为明显的垂直分布和地域分布。

境内植被属中亚热带常绿阔叶林地带北部亚带——浙皖山丘青冈、苦槠林植被区——天目山、古田山丘山地植被片。由青冈、苦槠、木荷、香樟、红楠等典型的中亚热带壳斗科、樟科、山茶科等树种组成的常绿阔叶林,为境内主要的植被。目前,全市自然植被主要有针叶林、阔叶林、针阔混交林、竹林、灌草丛 5 个类型,大部分为次生植物。植被垂直分布不明显。一般 300 米以下以经济特产林、竹林、阔叶林和人工杉木为主,间有马尾松林;海拔 300~700米处,以马尾松、杉木、柏木和毛竹林为主,间有阔叶林;海拔 700 米以上山地,均为孤峰,其乔木为温性针叶林所替代。在阳坡和山脊部,多为人工黄山松林;山坳土壤水分较多处,有小片柳杉和金钱松人工林。随着森林保护的加强,自然森林植被由针叶林→针阔混交林→阔叶林演变的趋势。

3.1.6 水文环境

根据地下水赋存条件、水理性质、水力特征,将富阳区内地下水分为孔隙水(潜水与承压水)、岩溶水及基岩裂隙水三大类。

- 一、松散岩类孔隙水
- 1、潜水
- ①全新统冲积砂砾石含水层

分布于汤家埠以上富春江两侧及各支流河谷地带,即东图—场口—汤家埠及新登、高桥、春建、大源等地。岩性为砂、砂砾石,结构松散,上覆不稳定的亚砂土薄层。厚度 5~13m,以场口一带为最厚。渗透系数 10~20m/d,大口径井出水量(以降深 5m 计)>3000m³/d,水位埋深 1.1~3.80m,年变幅 1~2m。固形物<0.3g/l,水化学类型为 HCO₃-Ca 或 HCO₃·SO₄-Ca·(Mg)型。由于水量大,水质好,可作小型集中供水水源地。

②全新统冲海积、冲积亚砂土、粉细砂含水层分布于汤家埠以下冲海积平

原区。由亚砂土、粉砂、粉细砂组成,结构松散,厚度变化大,层厚 1.5~27.5m。单井涌水量多数 100~1000m³/d,少量为 10~100m³/d。水位埋深 0.2~1.8m,固形物 0.3~0.6g/l,个别地段>1g/l,水化学类型为 HCO₃-Ca·(Mg)或 HCO₃·Cl-Ca·Na(Mg)型。

- ③全新统冲湖积、湖沼积亚砂土、亚粘土含水层仅分布于皇天畈地区地势低洼区。岩性以亚粘土、亚砂土为主。厚度 2~10m, 水位埋深 0.7~3.0m, 民井出水量<10m³/d, 水质为淡水。
 - ④上更新统洪积砂砾石夹粘性土含水层

分布于沿江两侧及沟谷底部,岩性为砂砾石含粘性土,结构稍密,厚度 2~12m。在上游地段为潜水,向下逐渐过渡为承压水,并掩伏于全新统之下。民 井出水量<100m³/d。水位埋深 0.2~2.6m,水质为淡水。

⑤中更新统洪积含粘性土砂砾石、网纹红土含水层

分布于山麓地带,组成洪积扇、洪积阶地,由含粘性土砂砾石组成,结构密实。厚度 4~11m,民井出水量<10m³/d,水位埋深 0.1~0.6m,水质为淡水。

- 2、承压水
- ①上更新统上组冲积粉细砂含水组(I1)

分布于河谷平原区的局部地段且不连续(东洲岛)。主要由粉细砂组成,顶板埋深 20~30m,厚度 2~10m。局部因顶板海相层被后期流水切割而不连续,与上覆潜水含水层发生水力联系。单井涌水量(以降深 10m 计)<100m³/d,水位埋深 0.9~1.8m,固形物 0.6~0.9g/l,水化学类型 HCO₃·Cl-Na 或 Cl·HCO₃-Na 型。

②上更新统下组冲积砾石、砂砾石含水组(I2)

分布于富春江、巧溪、白洋溪古河道内。其中富春江古河道自南西汤家埠,经北东富阳、东洲岛折向北袁浦出境,宽约 2~6km。含水层岩性以砾石、砂砾石为主,结构松散,古河道中心部位透水性良好。厚度一般 10~15m,最厚达 20m。单井涌水量在三山以上及古河道边缘 100~1000m³/d,以下达 1000~3000m³/d,最大可达 5000m³/d。原始水位埋深 0.7~4.3m。水位受富春江水位涨落影响而升降。巧溪古河道自西向东,白洋溪古河道自北向南,二者在后周汇合后转向南东与富春江古河道连接,宽约 0.5~2km。含水层顶板埋深 17~20m,厚度 9~10m,富水性稍差,单井涌水量 100~1000m³/d。咸淡水界线在杭州市袁浦至富阳区渔

山五丰村一带,以上为淡水区,固形物 0.2~0.7g/l, 水化学类型 HCO₃-Na·Ca 或 HCO₃·Cl-Na·Ca 型。以下为微咸水区,固形物>1g/L, 在富阳区境内分布范围较小。

③中更新统洪积含粘性土砂砾石含水层广泛分布于河谷平原底部及古河道两侧,由含粘性土砂砾石或含砾亚粘土组成,结构密实,透水性差。含水层顶板埋深 27~47m,厚度 2~26m,单井涌水量<100m³/d,水量贫乏,水质多为淡水。

二、岩溶水

1、碳酸盐岩类岩溶水

主要分布于胥口、渌渚及三山,由石炭系中上统、二叠系下统碳酸盐岩类组成。按其埋藏条件分裸露型和覆盖型二种类型。裸露型常见泉流量 1~10L/s,在渌渚最大可达 24.5L/s。覆盖型仅在三山一处。裸露型岩溶水富水性极不均一,动态变化大,又处于丘陵山区,难以开发利用。

三山(蒋家村)覆盖型岩溶水分布区,面积约 5.5km²,由石炭系、二叠系灰岩组成,为一向斜型储水构造。上覆中更新统粘土砾石层,顶板埋深 15~50m。岩溶发育深度-50~-90m,下限达-100~-150m。在向斜北东倾伏段逐渐被侏罗系所掩,为埋藏型岩溶,埋深>50m。单井涌水量(以降深 20m 计)>1000m³/d,局部水量较大。原始水位埋深 0.9~18m,具承压性。固形物<0.3g/L,水化学类型 HCO₃-Ca 型。

2、碳酸盐岩夹碎屑岩岩溶水

主要分布于万市、洞桥及常安、东图、龙门一带,由寒武系中上统、震旦系上统泥灰岩、白云岩夹碎屑岩组成,岩溶发育相对较差,以裸露型为主。其中震旦系上统常见泉流量>1L/s,在万市石门最大达 17.5L/s。单井涌水量>100m³/d,水位埋深约 1.2m。其余常见泉流量<1L/s。固形物 0.2~0.5g/L,水化学类型 HCO₃-Ca 型。

三、基岩裂隙水

区内分布广泛,由泥盆系石英砂岩及中生界至元古界砂岩、泥岩构成层状构造裂隙水,前者常见泉流量 0.1~1L/s,后者<0.1L/s;由侏罗系火山岩类及燕山期侵入岩组成的块状岩类构造裂隙水或风化带网状裂隙水,水量贫乏,分布不均,常见泉流量<0.1L/s。在皇天畈下伏花岗岩分布面积约 29km²,上覆第四纪厚度 15~35m,涌水量为 130~250m³/d,水位埋深+0.30~1.10m,具承压性。水

质良好, 固形物 0.155~0.301g/l, HCO₃-Ca 型水。

四、地下水的补排

岩溶水、基岩裂隙水的补给条件好,主要补给来源为大气降水,局部为地 表水及地下水间的相互补给。河谷区孔隙潜水主要接受大气降水和地表水补给, 在丰水期,河水水位高出河床及地下水水位,地表水补给地下水,枯水期反之, 地下水补给地表水。孔隙承压水补给条件复杂,且相对较差,其补给主要为通 过"天窗"的垂向补给、上游冲积潜水含水层的侧向补给和局部下伏的灰岩或花 岗岩含水层的基底补给。

3.2 场地基本情况及现状调查

富阳永明热镀锌有限公司退役场地位于杭州市富阳区灵桥镇环西路 1 号, 占地面积 19000m² (约 28.5 亩),地块东至环西路,南至环南路,西至春徐线, 北至杭州富阳正坤实业有限公司厂界。

地块范围及边界拐点坐标如下:

 边界序号
 经度
 纬度

 1
 120.020964078
 30.021656759

 2
 120.022731654
 30.022498973

 3
 120.023321740
 30.021498509

 4
 120.022246174
 30.020895012

表 3-2 地块边界拐点坐标

图 3-1 地块边界范围图

经现场踏勘和走访调查,富阳永明热镀锌有限公司于 2006 年 6 月开始在该地块上试生产,《年加工镀锌件 2 万吨变更项目》(登记表)于 2006 年 8 月经环保审批同意,《富阳永明热镀锌有限公司年加工 3 万吨热浸镀锌件技改项目环境影响报告书》于 2009 年 8 月 4 日取得环评批复(富环开发[2009]505 号),2010 年 5 月 13 日通过环保"三同时"竣工验收(富环保验[2010]44 号),主要生产工艺为原料、酸洗、漂洗、助镀、热镀锌、钝化、成品,主要污染因子为酸雾、废酸、废水、废渣(污泥)等。

根据企业人员访谈及卫星影像图的相关资料,原有厂区内的平面布置图如下:

图 3-2 地块原生产厂区平面布置图 (影像图取自谷歌地图 2017 年 12 月份)

企业于 2017 年底停止生产, 地块内建筑和生产设施于 2018 年初拆除, 目前场地内的现状如下:

表 3-3 场地内现状照片

地块内部东侧, 原包装、堆放区域, 目前植被生长良好

地块东侧,原生产区域,目前厂房已拆除,厂房拆除时的部分建筑废料堆放在场地内。

原应急池区域

原污水站区域

现场踏勘及访谈

3.3 场地历史情况调查

通过现场走访、人员访谈及卫星历史影响的收集,场地的历史情况如下:

- 1、上世纪60年代-2003年,地块为农田或荒地;
- 2、2003年10月-2006年5月,富阳永明热镀锌有限公司于2003年10月取得该地块的土地证,后续建造厂房及部分生产设施,并未生产。
 - 3、2006年6月-2017年底,富阳永明热镀锌在该地块从事生产活动。
 - 4、2018年1月-至今,场地闲置,无生产活动,厂房及设施拆除。 不同时期的地块卫星影像图如下:

表 3-3 不同时期的地块卫星影像图及用途介绍

4、2018年3 月的历史影 像图显示,地 块内富阳永 明热镀锌有 限公司的材料堆放区域 己清空,厂房 仍保留。 5、2018年10 月的历史影 像图显示,地 块内厂房已 拆除。

3.4 场地周边现状及历史调查

根据现场实勘,地块东面隔环西路为杭州立钢锚具有限公司和路林电子科技有限公司,地块南面隔环南路约110m处为永丰村(现农居点已拆除,为空地),地块西面为防洪堤及小源溪,地块北面为杭州富阳正坤实业有限公司。

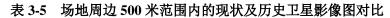
场地周边现状环境的现状照片如下:

表 3-4 场地周边现状环境照片

地块东侧, 杭州立钢锚具有限公司

地块东侧,路林电子科技有限公司

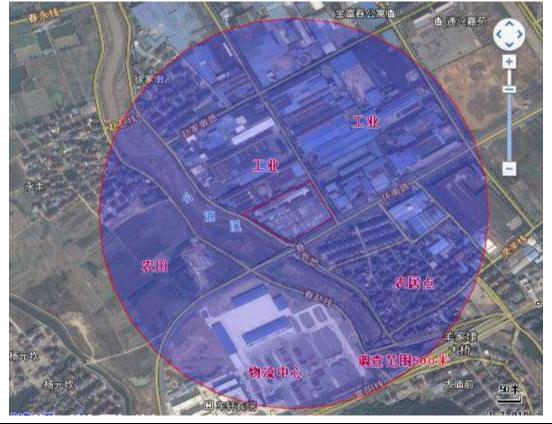
场地北侧,杭州富阳正坤实业有限公司,目前厂房已拆除。

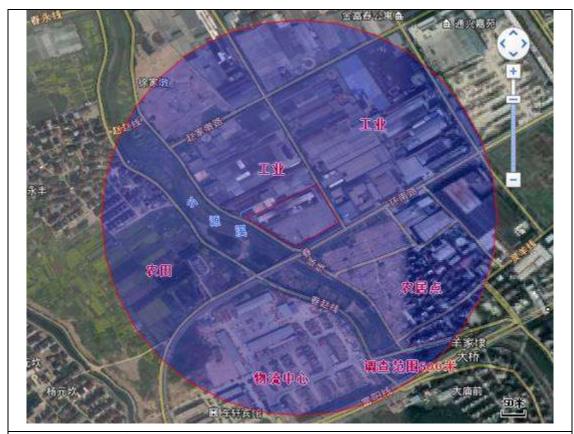


场地西侧, 围墙西侧为防洪堤及小源溪

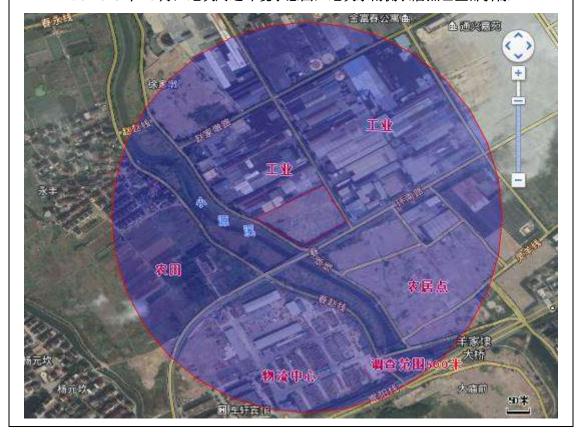
场地南侧,环南路约 110m 处为永丰村农居点,目前已拆除

场地周边500米范围内的现状及历史卫星影像图对比如下:




2、2009 年,场地周边环境示意图 工业 工业 (基础) (

3、2014年地块周边环境示意图,在地块西南处原农田区域建造了物流中心


刑车好货馆

4、2018年3月,地块周边环境示意图,地块东南侧农居点部分已拆除

5、2018年10月,地块周边环境示意图,地块东南侧农居点已全部拆除

目前地块周边敏感点主要为地块西北侧 210 米处的农居点及地块西侧 30 米处的地表水小源溪,具体如下:

 序号
 名称
 方位
 距离厂界最近处(m)

 1
 永丰村
 西北侧
 210

 2
 小源溪
 西侧
 30

表 3-6 地块周边敏感点调查

3.5 场地利用的规划

场地位于富阳区灵桥镇,属于富春湾新城区块,查阅《富阳市富春湾新城总体规划》(2012-2030),该地块所在区域的规划为商业工业混合用地(M/B),属于建设用地的第二类用地(规划图纸见附图 2)。

3.6 场地内原有生产情况调查

3.6.1 地块相关环境调查资料收集

富阳永明热镀锌有限公司于 2006 年 6 月开始在该地块上试生产,《年加工镀锌件 2 万吨变更项目》(登记表)于 2006 年 8 月经环保审批同意,《富阳永明热镀锌有限公司年加工 3 万吨热浸镀锌件技改项目环境影响报告书》于 2009年 8 月 4 日取得环评批复(富环开发[2009]505号),2010年 5 月 13 日通过环保"三同时"竣工验收(富环保验[2010]44号),主要生产工艺为原料、酸洗、漂洗、助镀、热镀锌、钝化、成品,主要污染因子为酸雾、废酸、废水、废渣(污泥)等。环评批复及三同时验收意见见附件 2、3。

3.6.2 生产及原辅材料消耗

根据资料收集及人员访谈,富阳永明热镀锌有限公司的环评审批产能为年加工3万吨热浸镀锌件,生产中使用到的原辅材料种类如下:

序号	名称	规格	备注
1	锌锭		最初使用无烟煤为
2	塔料		煤气发生炉的燃
3	NaOH 溶液	150g/L	料,后面改造后天
4	盐酸	15%	然气为燃料。

表 3-7 企业生产中使用到的原辅材料种类

5	酸雾抑制剂	1
6	氯化铵	10%
7	氯化锌	10%
8	钝化剂	铬酸酐,浓度1%
9	无烟煤	含硫量低于 0.8%

主要原辅材料说明:

1、盐酸

别名: 氢氯酸,分子式: HCl,分子量: 36.46,蒸汽压: 30.66kPa(21℃), 熔点: -114.8℃/纯,沸点: 108.6℃/20%,密度: 相对密度(水=1)1.20,相对密度 (空气=1)1.26,溶解性: 与水混溶,溶于碱液。

外观与性状:无色或微黄色发烟液体,有刺鼻的酸味,危险标记 20(酸性腐蚀品)。

主要用途:重要的无机化工原料,广泛用于染料、医药、食品、印染、皮革、冶金等行业。

健康危害:接触其蒸气或烟雾,引起眼结膜炎,鼻及口腔粘膜有烧灼感,鼻衄、齿龈出血、气管炎;刺激皮肤发生皮炎,慢性支气管炎等病变。误服盐酸中毒,可引起消化道灼伤、溃疡形成,有可能胃穿孔、腹膜炎等。

急性毒性: LD50900mg/kg(兔经口); LC503124ppm, 1 小时(大鼠吸入)。

危险特性: 能与一些活性金属粉末发生反应,放出氢气。遇氰化物能产生 剧毒的氰化氢气体。与碱发生中合反应,并放出大量的热。具有强腐蚀性。

燃烧(分解)产物: 氯化氢。

2、氯化铵

中文别名: 氯化亚、硇砂

分子量: 53.49

分子式: NH₄Cl

别名: 电盐、电气药粉、盐精

性质:无色立方晶体或白色结晶。味咸凉而微苦。相对密度 1.527。易溶于水,溶于液氨,微溶于醇,不溶于丙酮和乙醚。加热至 100℃时开始显著挥发,337.8℃时分解为氨和氯化氢,遇冷后又重新化合生成颗粒极小的氯化铵而呈白色浓雾,不易下沉,也极不易再溶解于水。加热至 350℃升华,沸点 520℃。吸

湿性小,但在潮湿的阴雨天气也能吸潮结块。水溶液呈弱酸性,加热时酸性增强。对黑色金属和其它金属有腐蚀性,特别对铜腐蚀更大,对生铁无腐蚀作用。

3、氯化锌

别名: 锌氯粉

分子量: 136.29

分子式: ZnCl₂

性质:白色粉末,无臭,易潮解。相对密度 2.91。溶于水、乙醇、乙醚、甘油,不溶于液氨。熔点: 365℃,沸点: 732℃。

用途:用作脱水剂、缩合剂、媒染剂、石油净化剂,还用于电池、电镀、 医药等行业。

4、铬酸(铬酸酐)

中文名称: 三氧化铬

分子量: 100.01

分子式: CrO3

性质:暗红色或紫色斜方结晶,易潮解。相对密度(水=1)2.70。易溶于水、硫酸、硝酸。

用途:用于热镀、医药、印刷等工业、鞣革和织物媒染。

健康危害:急性中毒:吸入后可引起急性呼吸道刺激症状、鼻出血、声音嘶哑、鼻粘膜萎缩,有时出现哮喘和紫绀。重者可发生化学性肺炎。口服可刺激和腐蚀消化道,引起恶心、呕吐、腹痛、血便等;重者出现呼吸困难、紫绀、休克、肝损害及急性肾功能衰竭等。

急性毒性: LD₅₀80mg/kg(大鼠经口)

致突变性: 微粒体诱变实验: 鼠伤寒沙门氏菌 10μg/皿。微生物致突变: 鼠伤寒沙门氏菌 50μmol/L; 大肠杆菌 8μmol/L。

生殖毒性:小鼠皮下注射最低中毒剂量(TDL₀): 20mg.kg(孕 8 天),对胚胎外结构有影响(胚胎、脐带);胚胎发育迟缓。

致癌性: IARC 致癌性评论: 人和动物均有充分证据, 人类致癌物。

危险特性:强氧化剂。与易燃物(如苯)和可燃物(如糖、纤维素等)接触会发

生剧烈反应,甚至引起燃烧。与还原性物质如镁粉、铝粉、硫、磷等混合后,经摩擦或撞击,能引起燃烧或爆炸。具有较强的腐蚀性。

3.6.3 生产工艺流程

原有生产工艺流程如下:

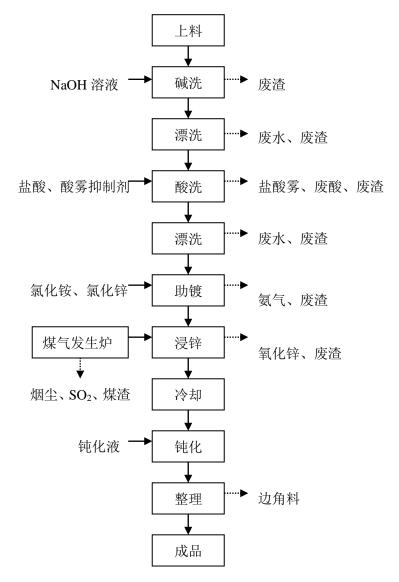


图 3-3 原有企业生产工艺流程图

首先将塔料放入碱洗池中除油,经漂洗池除去塔料表面的碱液,漂洗池中用酸洗池内更换的废酸溶液加水配制而成;再经酸洗池除锈,用 15%的盐酸溶液在常温下进行酸洗,酸洗后吊起塔料并静置片刻,随后放入漂洗池用清水进行漂洗。为了使待镀件表面与空气隔绝,防止进一步微氧化,并保证待镀件在热浸镀锌时其表面的铁基体在短时间内与锌液起正常的反应,生成铁-锌合金层,需将待镀件放入助镀池中去除掉酸洗后待镀件表面上的一些铁盐、氧化物及其它脏物,助镀池内溶液为氯化铵和氯化锌混合而成的,温度控制在 60℃左右,此时有白色烟雾产生,塔料经自动散热干燥后,再放入 450℃呈熔融状的锌液中进行热浸镀锌。取出后放入冷却池中冷却,冷却后的镀件放入钝化液(1%铬酸酐)中作钝化处理,取出自然干燥后,经整理检验合格后入库。

镀锌采用氯化物镀锌。氯化物镀锌镀层的质量好,沉积速度快,镀液的分散能力和深镀能力好。氯化物镀锌的镀液由氧化锌、氯化铵等组成。镀锌层的后处理,为了提高镀锌零件的耐蚀性和装饰性,常在镀锌层外覆盖上一层致密、稳定性高的薄膜,本项目钝化液采用铬酸酐、双氧水溶液混合而成。

3.6.4 生产设备

企业原有生产设备如下:

表 3-8 企业原有生产设备一览表

序号	设备名称	型号规格(长*宽*深)	数量
1	锌锅	XG08, 12.5m*1.8m*2m	1 个
2	锌锅	XG08, 12m*1.8m*2m	1 个
3	锌锅	XG08, 3.5m*1.6m*2m	1 个
4	酸洗池	12.6m*1.5m*1.8m	5 个
5	酸洗池	12.6m*2m*1.8m	2 个
6	漂洗池	12.6m*2m*1.8m	1 个
7	助镀池	12.6m*2m*1.8m	1 个
8	钝化池	13.05m*2.2m*2.15m	1 个
9	冷却池	13.05m*2.2m*2.15m	1 个
10	备用池	13.05m*2.2m*2.15m	1 个
11	酸洗池	11.5m*1.6m*1.8m	2 个
12	漂洗池	4.5m*1.65m*1.8m	1 个
13	助镀池	4.5m*1.65m*1.8m	1 个
14	钝化池	4m*2m*2m	1 个
15	冷却池	4m*2m*2m	1 个
16	煤气发生炉	MHB-2400	1 台
17	煤气发生炉	HJMQI-1.5	1台
18	起重行车	LDA-5+5	1 辆
19	起重行车	LDA-5+5	1 辆
20	起重行车	LDA-3+3	2 辆
21	起重行车	LDA-3+3	1 辆
22	起重行车	MD-5	1 辆
23	起重行车	MD-5	1 辆
24	起重行车	MD-3	2 辆
25	起重行车	MD-3	1 辆
26	酸雾收集处理塔		1 套
27	箱式压滤机	XM-YZ2/630-UB	1 台
28	空压机	W-0.67/7	1 台
29	石墨交换器	YKD-15	1台

3.6.5 污染物处理设施及罐、槽存贮设施

1、废水处理设施

企业原生产过程中产生的生产废水主要为碱洗后漂洗废水和酸洗后漂洗废水,生产废水采用的处理工艺为"二级氧化与二级沉淀"处理工艺,原污水处理设施位于厂区西北侧,工艺流程具体如下:

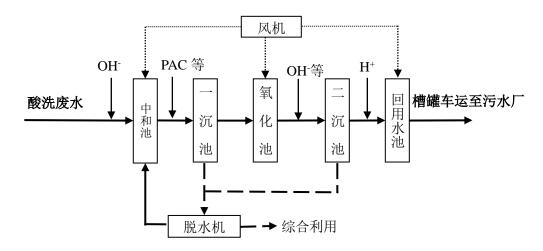


图 3-4 原有污水处理工艺

废水经收集后,在中和调节池加碱液至 pH6.5~8 进行气力搅拌,使中和调节池内废水得以充分的均质、均量,并使部分 Fe²⁺氧化成 Fe³⁺。混匀废水泵入一沉池反应区,在 PAC 混凝剂与 PAM 助凝剂的协同作用下进行初级沉淀。沉淀后废水自流入氧化池曝气氧化,使废水中未被去除的 Fe²⁺基本上转化为 Fe³⁺,消除出水返黄现象。曝气氧化后废水泵入二沉池反应区,加碱液至 pH9~10,在 PAC 混凝剂与 PAM 助凝剂的协同作用下进行二级沉淀。沉淀后出水再自流入回用水池,加酸液回调至 pH6~9,部分清水回用于漂洗工段,其余清水由槽罐车拉至污水厂。

原污水站各构筑物的布置图见附图 3。

根据污水站构筑物的设计图纸,原污水池的深度约 4.0m, 经咨询企业管理人员, 原酸洗和碱洗废水是由水泵抽至污水收集池, 处理后由槽罐车外运, 厂区内无污水输送管道和排放管道。

2、废气处理设施

原有生产过程产生的废气主要有:

- 1、酸洗工段的盐酸雾,采用侧吸罩及酸雾吸收塔的处理设施。
- 2、建厂之初锌锅的加热由原煤气发生炉提供,燃料为无烟煤,产生烟尘和 SO₂,废气经水膜除尘、碱液脱硫后再通过 35m 高的烟囱外排。后续企业生产 过程中根据已停用煤气发生炉,改为天然气加热。
- 3、镀锌工序产生的氧化锌烟尘,采用槽边侧吸罩进行收集,再布袋除尘器 净化后达标排放。氧化锌烟尘净化工艺流程见下图。

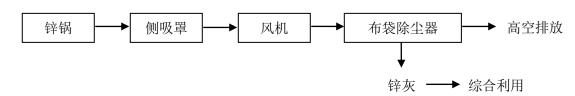


图 3-5 氧化锌烟尘净化工艺流程图

3、固废处理

企业原有生产产生的固废主要为煤渣、锌灰、锌渣、槽渣、污水站污泥、 酸洗废液,主要处置方式如下:

序号	固废性质	污染源	处理处置措施
1		煤渣	由附近水泥厂清运用作水泥生产配料和用于附近道路铺路。
2	一般固废	边角料	由物资回收部门回收利用。
3		生活垃圾	当地环卫部门统一清运处理
4		锌灰、锌渣	收集后外售
5	危险	槽渣	统一收集,采用专用设备储存,委托有危
6		污水站污泥	一
7	1/2/1/2)	酸洗废液	及又在贝贝的平匹应行处理。

表 3-9 原有固体废弃物种类及处置措施

锌灰、锌渣的储存区在厂区北侧,邻近原煤气发生炉的位置,煤气发生炉停 用后,原有位置用于暂存危废。

4、槽、罐存贮设施及地下设施调查

企业厂区内未设置储罐,酸槽、污水池均做了防腐防渗设施。

酸槽放置于酸洗槽附近,位于生产车间内,为地上槽。

厂区内的地下设施为应急池、污水池、锌锅,应急池的地下深度约 3m,污水池的地下深度约 4m,锌锅的地下深度约 2m,应急池、污水池位于厂区西北侧,锌锅位于生产车间内,具体位置见平面图。

3.7 场地内泄露和污染事故调查

调查小组从环保相关部门收集了企业历史上的环境监察意见、信访事件等材料,进一步了解场地历史上有无发生过泄露、乱排放等情况。具体如下:

- 1、根据 2008 年 6 月 9 日原富阳市环境保护局环境违法行为立案登记表及 2008 年 6 月 20 日原富阳市环境监察大队的监察意见书,企业厂区西侧有表面处 理废水渗漏外排。
- 2、根据 2012 年 10 月 1 日原富阳市环境监察大队的监察意见书,企业盐酸处置不规范,要求所有危废委托有资质的单位处置并签订协议,做好台账记录。
- 3、根据杭州市富阳区人民政府文件《杭州市富阳区人民政府关于中央环保督察组交办 0631 号的调查处理报告》(富政发[2017]33),2017 年 8 月 16 日,企业热镀锌车间生产正常,但车间安装风机一侧窗户未按环评报告的要求进行封闭而处于打开状态,用于酸雾收集的装置功率设置过低,导致车间内较大酸雾、粉尘现象,部分大气污染物直接外排。另外,厂区雨水沟沿线设有 2 个锌渣仓库和酸性含锌调镀件吊带沥干槽,锌灰与调镀件吊带均未按规范存放,导致锌渣和沥干槽废水扬散、渗漏至附近雨水沟。经过对锌渣仓库和酸性含锌调镀件吊带沥干槽附近雨水沟和厂区雨水外排口废水取样监测,总锌均超过了《污水综合排放标准》(GB8978-1996)中的排放限值。

根据违法行为的调查结果,应重点关注锌渣仓库、沥干槽及雨水总排口所在 区域,锌渣仓库、沥干槽位于厂区北侧邻近围墙,雨水的总排口位于厂区的东 北侧原办公楼下方。表面处理渗漏外排区域位于厂区西北侧的应急池附近。

3.8 场地水文地质调查

地块位于富阳区灵桥镇,属于富春湾新城区块,地块所在区域地质情况引用地块南侧隔环南路的拟建项目《飞旋科技 5500 台磁悬浮高速机电项目岩土工

程勘察报告》(苏州大地勘察工程有限公司,2018年11月),两个地块仅一路之隔,地勘材料具有可引用性,场地所在区域的工程地质条件如下:

根据本次勘察揭示的地层,考虑岩土层的岩性、结构构造、埋深分布及物理力学性质等因素,将岩土层划分为6个岩土工程层,现分述如下:

第(1₁)层:杂填土,层厚 0.90~4.40 米,层顶埋深 0.00~0.00 米,层底标高 4.73~7.64 米。杂色、松散,稍湿,主要由碎块石、建筑垃圾(碎砖块、混凝土块和混凝土地坪等)及少量粘性土组成,结构杂乱,硬杂质粒径一般 5-9 厘米,部分 15-30 厘米,含量在 30-85%不等,全场分布。

第(1₂)层: 淤泥质填土,层厚 1.70~3.30 米,层顶埋深 2.10~3.20 米,层底标高 3.43-4.55 米。灰色,流塑,饱和,以淤泥质粉质黏土成分为主,夹 10%左右的建筑垃圾和碎砾石,含腐殖质,局部分布。

第(2₁)层: 粉质黏土,层厚 0.70~4.70 米,层顶埋深 0.90~4.40 米,层底标高 1.63~5.78 米。灰黄色,软塑~可塑,饱和,干强度中等,中等压缩性,中等韧性,摇震反应无,切面较光滑,含铁锰质氧化物,夹粘质粉土,局部表面粉土含量较高,韧性较差,全场分布。

第(2₂)层: 层厚 0.60~3.60 米, 层顶埋深 3.40~5.90 米, 层底标高 1.82~4.27 米。灰黄或灰色,稍密,很湿-湿,干强度低,中等压缩性,低 韧性, 摇震反应迅速, 无光泽, 含云母碎片, 局部粘性土含量较高, 部分分布。

第(2_{2*})层:粉砂,层厚 $0.90\sim2.70$ 米,层顶埋深 $3.30\sim4.60$ 米,层底标高 $3.05\sim4.88$ 米。灰、灰黄色,稍密-中密,饱和,以粉砂为主,含植物朽木片及贝壳碎片,局部分部。

第(2_3)层: 圆砾,层厚 $1.60\sim2.90$ 米,层顶埋深 $4.90\sim5.60$ 米,层底标高 $1.49\sim2.67$ 米。灰色,稍密,饱和,卵砾石次棱角状为主,粒径一般 1-3cm,少量 5-7cm,含量在 55-60%左右,成分砂岩和凝灰岩为主,质坚硬,空隙由砂和粘性土充填,砂以中粗砂为主,含量在 15-20%之间,余为粘性土,局部分布。

第 (3) 层: 淤泥质粉质黏土, 层厚 $0.40\sim6.70$ 米, 层顶埋深 $3.70\sim7.80$

米,层底标高-2.91~3.51米。灰色,流塑,饱和,干强度中等,高压缩性,高韧性,摇震反应迅速,切面光滑,含有机质和腐殖质,广泛分布。

第(4₁)层: 粉质黏土,层厚 0.60~4.30 米,层顶埋深 5.10-10.20 米,层底标高-3.45~1.64 米。灰绿或灰黄色,可塑~硬可塑,饱和,干强度中等,中等压缩性,中等韧性,摇震反应无,切面较光滑,含铁锰质氧化物,局部夹有 5-15%左右细砾石,广泛分布。

第(5₁)层:碎石混黏质粉土,层厚 0.80~7.00 米,层顶埋深 7.80-13.70 米,层底标高-8.05~-1.92 米。灰黄色,稍密,饱和,碎砾石呈次棱角状为主,粒径一般 2-4 厘米,个别大于 7cm,含量在 55-65%之间,成分砂岩、凝灰岩和石英岩为主,质坚硬,空隙主要由粘性土和少量中粗砂充填,其中中粗砂含量在 10-20%之间,余为粘性土,全场分布。

第(5_{1*})层:粉质黏土,层厚 0.50~2.70米,层顶埋深 9.80-13.00米,层底标高-5.13~-2.97米。灰黄色,可塑~硬可塑,饱和,干强度中等,中等压缩性,中等韧性,摇震反应无,切面较光滑,含铁锰质氧化物,局部分部。

第(5₂)层:含粉质粘土碎石,层厚 3.30~9.00 米,层顶埋深 12.00-16.60 米,层底标高-14.02~-9.14 米。灰黄、褐黄色,稍密~中密,饱和,碎砾石呈次棱角状为主,粒径一般 2-5 厘米,少量 7-10cm,含量在 60-70%之间,成分砂岩、凝灰岩为主,质坚硬,空隙主要由中粗砂和粘性土充填,其中砂的含量在 10-15%之间,余为粘性土,全场分布。

第(5₃)层:碎石,层厚 9.60~16.90 米,层顶埋深 18.20-23.10 米,层底标高-26.40~-13.29 米。灰黄色,中~密实状,饱和,碎砾石次棱角状为主,粒径一般 4-7 厘米,部分 10-12cm,个别大于 20cm,含量在 70-80%之间,成分砂岩、凝灰岩和石英岩为主,质坚硬,空隙主要由中粗砂和少量粘性土充填,其中中粗砂的含量在 8-12%之间,余为少量粘性土,全场分布。

第 (6_1) 层:全风化砂岩,层厚 $0.50\sim4.10$ 米,层顶埋深29.00-35.50 米,层底标高- $30.50\sim-20.45$ 米。灰黄、黑色,全风化,稍密~中密,原岩

组织结构基本破坏,风化成砂土状,结构模糊,手可掰开捏碎,干钻易进。

3.9 污染初步识别

通过资料收集、现场踏勘等方式,本次环境初步调查对富阳永明热镀锌有限公司退役场地的污染源头、场地现状等问题有了客观的认识。结合原有生产车间的布置、原辅材料的种类,重点调查生产车间中锌锅区域、表面处理区域、污水站、锌渣仓库、沥干槽、煤堆场、应急池区域、雨水总排口,初步识别可能对土壤和地下水造成污染的污染物种类如下:

序号	历史上使用过的潜在污染 物名称	来源	关注污染物
1	盐酸	盐酸 原辅材料	
2	氯化铵	原辅材料	氯化物
3	氯化锌	原辅材料	锌
4	氢氧化钠	原辅材料	酸碱度
5	铬酸 (铬酸酐)	原辅材料	总铬、六价铬
6	原煤	由于使用过原煤为煤气 发生炉的燃料,可能会产 生氰化物、苯酚、焦油、 苯并[a]芘。	氰化物、苯酚、苯并[a] 芘、石油烃(C10-40)

表 3-10 本场地关注污染物判断表

由于工艺中用到氢氧化钠、盐酸,需关注土壤和地下水的 pH 值;使用过氯化铵、氯化锌、铬酸,需关注锌、总铬、六价铬、氯化物;由于使用过原煤为煤气发生炉燃料,煤气发生炉的焦化过程中会产生氰化物、苯酚、焦油,原煤的使用可能会产生苯并[a]芘。

本次初步调查识别出的潜在污染区域在总平图上标注如下,重点对潜在污染区域内的土壤和地下水进行采样分析,同时兼顾一般区域。

图 3-6 潜在污染区域初步识别

四、监测方案

4.1 布点依据

本项目土壤和地下布点主要按照《场地环境调查技术导则》(HJ 25.1-2014)、《场地环境监测技术导则》(HJ 25.2-2014)和《建设用地土壤环境调查评估技术指南》(环境保护部 2017 年 12 月)等文件的相关要求,并结合潜在污染区域和潜在污染物的识别结果,对场地内土壤和地下水进行布点采样监测。

土壤样品布点采样原则为:"初步调查阶段,地块面积≤5000m²,土壤采样点位数不少于3个;地块面积>5000m²,土壤采样点位数不少于6个,并可根据实际情况酌情增加",采样深度至少达到地块原有构筑物地基以下1m。此外,在地块外部区域设置土壤对照监测点位,对照检测点位尽量选择在一定时间内未经外界扰动的裸露土壤进行采样。根据现场踏勘、资料收集查询和人员走访结果,地块内潜在污染区域易识别,因此,对于潜在污染区域采用专业判断布点的方法,将采样点布设在疑似污染的各个功能区;对于一般区域采用系统布点法,每40*40m区域内布设1个土壤点位。

地下水样品布点采样原则为:结合环境调查结论间隔一定距离按三角形或四边形布置 3~4 个地下水监测井,保证疑似污染区有监测井分布;监测井深度应保证在地下水水位以下至少 0.5m 以下,最深刻至隔水层顶板处。在地块外部区域土壤对照监测点位处设置地下水对照监测点。

4.2 布点位置及数量

4.2.1 土壤布点位置及数量

1. 土壤布点位置选取

参照《场地环境监测技术导则》(HJ25.2-2014)的土壤布点原则,对于关闭搬迁企业,土壤布点应优先选择布点区域内生产设施、原料堆场等疑似污染源所在位置,并应在不造成安全隐患或二次污染的情况下确定(例如钻探过程可能引起爆炸、坍塌、打穿管线或防渗层等)。若上述选定的布点位置现场不具备采样条件,应在污染物迁移的下游方向就近选择布点位置。

根据前期资料收集、历史监测数据和现场踏勘识别出的疑似污染区域,包括:生产车间中锌锅区域、表面处理区域、污水站、原煤气发生炉区域、锌渣仓库、沥干槽、应 急池区域、雨水总排口。 结合厂区布局,在地块内布设 19 个土壤点位,分别为:应急池区域布设 1 个土壤点位、污水站区域布设 1 个土壤点位、原煤气发生炉区域布设 1 个土壤点位、锌渣仓库及沥干槽区域布设 1 个土壤点位、生产车间内布设 4 个土壤点位(分别在 2 条表面处理生产线、2 座锌锅区域内布设)、雨水总排口布设 1 个土壤点位,塔料仓库内布设 2 个土壤点位、成品堆放区域布设 8 个土壤点位。在场地外布设 1 个土壤对照点。

共设置 20 个土壤采样点,其中厂内 19 点,厂外 1 点。

2. 土壤布点位置及数量

根据前期资料收集、历史监测数据和现场踏勘识别出的疑似污染区域,本次调查布设的20个土壤点位具体位置如下。

表 4-1 土壤监测点位数量及位置

序号	编号	监测点位位置	点位坐标	点位现场描述及选取依据
1	S1	原应急池区域	E: 120.02117 N: 30.02157	原有设施已拆除、池体上覆盖建筑废料。 历史为应急池区域,应急池紧邻的厂区 西侧围墙附近发生过表面处理废水渗漏 外排,该区域为潜在污染区。点位设置 在应急池边界东侧 50cm 处。
2	S2	原污水站区域	E: 120.02142 N: 30.02183	原有设施已拆除,池体上覆盖建筑废料。 历史为污水站区域,污水处理后回用, 为潜在污染区。点位设置在污水池东南 侧 50cm 处。
3	S3	原锌锅 1 区域	E: 120.02178 N: 30.02188	原有厂房及设施已拆除,表层覆盖建筑 废料。历史为1号锌锅所在区域,为潜 在污染区。采样点位紧邻原锌锅位置。
4	S4	原锌渣仓库、沥干 槽区域	E: 120.02207 N: 30.02215	原有厂房及设施已拆除,表层覆盖建筑 废料。历史为原锌渣仓库、沥干槽区域 所在区域,历史上发生过锌灰与调镀件 吊带均未按规范存放,导致锌渣和沥干槽废水扬散、渗漏至附近雨水沟的事件, 为潜在污染区。采样点设置在原锌渣堆 放处。
5	S5	原表面处理 2 区域	E: 120.02236 N: 30.02217	原有厂房及设施已拆除,表层覆盖建筑 废料。历史为表面处理2号线,盐酸罐 放置在酸洗槽附近,该区域为潜在污染 区。采样点位设置在原酸洗槽附近。
6	S6	原锌锅 2 区域	E: 120.02206 N: 30.02202	原有厂房及设施已拆除,表层覆盖建筑 废料。历史为2号锌锅所在区域,为潜 在污染区。采样点位紧邻原锌锅位置。
7	S7	原表面处理 1 区域	E: 120.02144 N: 30.02174	原有厂房及设施已拆除,表层覆盖建筑 废料。历史为表面处理1号线,盐酸罐 放置在酸洗槽附近,该区域为潜在污染 区。采样点设置在原碱洗槽附近。
8	S8	原塔料仓库内西侧 区域	E: 120.02166 N: 30.02164	原有厂房及设施已拆除,表层覆盖建筑 废料。历史一直为塔料仓库,为一般区 域。采样点设置在仓库内部。

富阳永明热镀锌有限公司退役场地环境初步调查报告

9	S9	原雨水总排口区域	E: 120.02283 N: 30.02224	位于厂区东北侧办公楼下方,临近东侧 围墙,原有办公楼已拆除,表层覆盖有 建筑废料及杂草,雨水总排口历史上有 锌超标的现象,为潜在污染区域。采样 点设置在原总排口位置。	
10	SJ8	原煤气发生炉区域	E: 120.02178 N: 30.02202	原有设施已拆除,表层覆盖建筑废料。 历史为煤气发生炉,停用后堆放过锌灰 锌渣,该区域为潜在污染区。采样点位 设置在原煤气发生炉炉体处。	
11	SJ1	原塔料仓库内东侧 区域	E: 120.022465 N: 30.021991	原有厂房及设施已拆除,表层覆盖建筑 废料。历史一直为塔料仓库,为一般区 域。采样点位设置在仓库内部。	
12	S10	原包装堆放区域, 厂区西南侧	E: 120.02204 N: 30.02144		
13	S11	原包装堆放区域, 厂区东南侧	E: 120.02264 N: 30.02168		
14	SJ2	原包装堆放区域	E: 120.022863 N: 30.021864		
15	SJ3	原包装堆放区域	E: 120.022993 N: 30.021625	现状被植被覆盖,历史上为包装堆放区	
16	SJ4	原包装堆放区域	E: 120.022654 N: 30.021451	域,为一般区域,按照 40*40m 网格布点,每个网格中心布设一个点位。	
17	SJ5	原包装堆放区域	E: 120.022329 N: 30.021284		
18	SJ6	原包装堆放区域	E: 120.021774 N: 30.021368		
19	SJ7	原包装堆放区域	E: 120.022032 N: 30.021139		
20	DZ1	场地西侧约 150m 处农田	E: 120.019824 N: 30.020898	点位所在区域历史和现状为农田,基本 未受扰动,可作为背景点。	

4.2.2 地下水布点位置及数量

1. 地下水布点位置选取原则

地下水采样点设置在疑似污染源所在位置(生产设施、原料堆场等)以及污染物迁移的下游方向。优先选择污染源所在位置的土壤钻孔作为地下水采样点。

2. 地下水位置及数量

场地内间隔一定距离按三角形布设 3 个地下水监测点,位置同土壤 S1、S2、S11,场地外地下水上游布设 1 个地下水对照点,位置同土壤对照点。具体见图 4-1。

 点位编号
 检测点位
 备注

 J1
 原应急池区域
 位置同土壤点位 S1

 J2
 原污水站区域
 位置同土壤点位 S2

 J3
 原包装堆放区域
 位置同土壤点位 S11

 DZJ1
 场地西侧 150m 处农田
 位置同土壤对照点 DZ1

表 4-2 场地内地下水监测点数量及位置

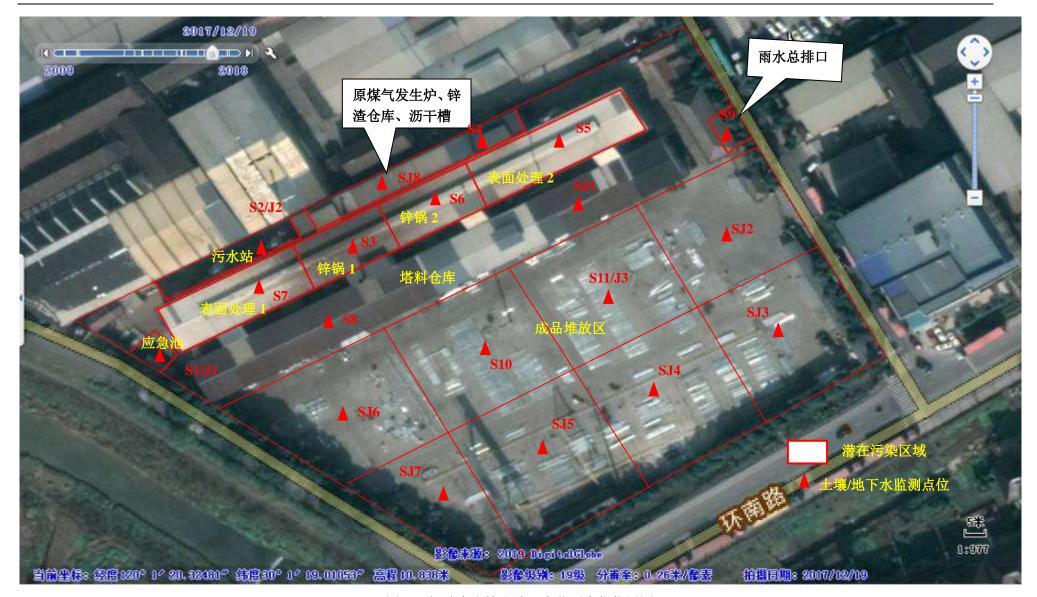


图 4-1 场地内土壤和地下水监测点位位置图

图 4-2 场地内土壤监测点位布设图

图 4-3 场地内地下水井布设图

图 4-4 场地外土壤和地下水对照点位置

4.3 采样深度及采样方式

4.3.1 土壤钻孔采样深度

监测点土壤钻探深度原则上达到地下水初见水位,最大深度至现场快速测试仪器及感官判断未受污染的深度为止,根据邻近地块地勘报告中土层分布情况,隔水层在淤泥质粉质黏土层,层顶埋深 3.70~7.80 米,本次钻探深度为 6m,其中 3m 以内采样间隔为 0.5m,3m~6m 采样间隔为 1m,根据现场快速测定仪的结果及采样时的土层分布,地下水位位于第二层粉质粘土层,在土壤表层选取 1 个样品、地下水位附近选取 1 个样品、饱和带选取 2 个样品送检。

采样方式: 采用 Powerprobe 钻机钻孔取样。

4.3.2 地下水水井深度

地下水采样井以调查潜水层为主。若地下水埋深大于 15m 且上层土壤无明显污染特征,可不设置地下水采样井。采样井深度应达到潜水层底板,但不应穿透潜水层底板; 当潜水层厚度大于 3m 时,采样井深度至少达到地下水水位以下 3m。

地下水采样深度至少应在地下水水位以下 0.5m 深,对于低密度非水溶性有机物污染,监测点位应设置在含水层顶部;对于高密度非水溶性有机物污染,监测点位应设置在含水层底部和不透水层顶部。J1、J2、J3 在含水层顶部各取 1 个地下水样品,为了调查地下水中高密度非水溶性有机物的情况,其中 J3 在含水层底部取 1 个地下水样品。本次地下水井的钻探深度为 6m。

采样方式: 采用 Powerprobe 钻机钻孔取样。

4.4 监测项目

4.4.1 监测项目判定依据

参考《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)、《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ/T164-2004)等导则,判断测试项目。

4.4.2 监测项目

本次调查的监测项目为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 表 1 中的基本项目 45 项,及 pH、含水率、锌、总铬、氰化物、苯酚、石油烃(C10-40)。

1. 土壤监测项目

本次调查土壤监测项目共52项,具体如下:

《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018) 中表 1 建设用地土壤污染风险筛选值和管制值(基本项目)45 项,具体为:

- (1) 重金属和无机物(7项): 砷、镉、铬(六价)、铜、铅、汞、镍:
- (2) 挥发性有机物(27项):四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1.1.2-三氯乙烷、三氯乙烯、1.2.3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1.4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯;
- (3) 半挥发性有机物(11 项): 硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]芘、苯并[b]荧蒽、苯并[k]荧蒽、菌、二苯并[a,h]蒽、茚并[1,2,3-cd]芘、萘;
 - (4)特征污染物: pH、含水率、锌、总铬、氰化物、苯酚、石油烃(C10-40)。
 - 2. 地下水监测项目

本次调查地下水监测项目与土壤检测项目保持一致。

具体如下:

- (1) 土壤监测项目中的 45 项基本项目。
- (2) 特征污染物及其他: pH、嗅和味、锌、氰化物、挥发酚、石油类。

五、现场采样和实验室分析

本项目中土壤、地下水样品的采集与实验室检测工作由江苏实朴检测服务有限公司和上海实朴检测技术服务有限公司承担。

(1) 建井、采样时间: 2019年05月10日

采集样品数量(不含质控样):采集12个土壤点位(场地内S1~S11,场地外对照点DZ),采集土壤样品47个。

采集质控样数: 土壤样品现场平行样4个。

样品交接时间: 2019年5月12日

实验室分析时间: 2019年05月16日~2019年07月12日

(2) 建井时间: 2019年9月21-2019年9月22日

采样时间: 2019年09月21日至2019年09月25日。

采集样品数(不含质控样):采集8个土壤点位(场地内SJ1~SJ8),4个地下水井(场地内J1~J3,场地外对照点DZ),采集土壤样品40个,采集地下水样品5个。

采集质控样数: 土壤样品现场密码平行样 6 个, 地下水现场密码平行样 1 个; 现场空白、运输空白、淋洗空白 1 组。

样品交接时间: 2019年9月22日、2019年9月26日。

分析时间: 2019年09月22日至2019年10月09日

5.1 现场探测方法和程序

本次场地现场探测调查主要采取资料收集和分析、现场踏勘、人员访谈以及初步采样分析相结合的方法。

首先,我单位接收业主委托后,对场地利用变迁资料、场地环境资料、场地相关记录、有关政府文件、以及场地所在区域的自然和社会信息等资料进行了收集和分析,重点对原企业有毒有害物质的使用、处理、储存、处置,以及生产过程和设备与管线等信息进行了了解。

然后,在此基础上对场地现场进行了有针对性的勘查,主要是踏勘场地内现状,包括原企业房屋现状和平面布置情况、设备拆除情况,车间、仓库、污水处理设施、排水管渠等部位的污染和腐蚀的痕迹;现场恶臭、化学品味道和刺激性气味残留情况等。

接着,采用红外测距仪观察和记录场地及周围是否有可能受污染物影响的居民区、学校、医院、饮用水源保护区以及其它公共场所等,明确其与场地的位置和距离关系;同时,采取当面交流和电话交流方式,对场地现状或历史的知情人进行了访谈,访谈内容为资料收集和现场踏勘所涉及的疑问,以及信息补充和已有资料的考证。

最后,制定了初步采样分析计划和方案,委托第三方检测机构对场地及周边环境的 地下水和土壤进行了采样与分析。

5.2 采样方法和程序

5.2.1 采样前准备

采样前准备定位仪器、现场探测设备、调查信息记录装备、监测井的建井材料、土壤和地下水取样设备、样品的保存装置和安全防护装备等。

采样前,利用卷尺、GPS卫星定位仪、经纬仪和水准仪等工具现场圈定采样点的位置和地面标高,并在采样布点图中标出。土孔钻探前探查采样点下部的地下管线、集水井和检查井等地下情况。

采样点位调整原则与记录:根据委托单位提供的确定的理论调查点位集外,还要通过必要的现场勘查与污染情况分析,最终对理论布点进行检验与优化。现场环境条件不具备采样条件需要调整点位的,现场点位的调整与客户进行确认,最终形成调查区域内实际需要实施调查的点位集。

钻探点位的调整工作可与采样行动结合,在按已布设的调查点位实施采样时,根据现场环境条件进行调整,记录调整原因与调整结果,确定并记录实际调查点位地理属性。

5.2.2 现场钻探及采样

本场地现场采样工作于2019年05月10日和2019年09月21日~2019年09月25日进行,期间进行了土壤采样、地下水建井采样。现场采样工作照片见图5-1,具体采样过程及方法如下:

一、定位和探测

根据已制定的采样方案,在厂区平面图上标记各采样点,根据平面图找到相应布点位置,将点位调整至排污管线或生产过程中易造成土壤污染的区域,在确定该点位下方无管线、储罐后(如地下有管线、储罐则适当调整采样点位置),在现场标记相应点位编号,现场定位采用手持式 GPS,现场测距采用手持式电子测距仪,地下水位测量时采用水位仪。

二、土壤样品的采集

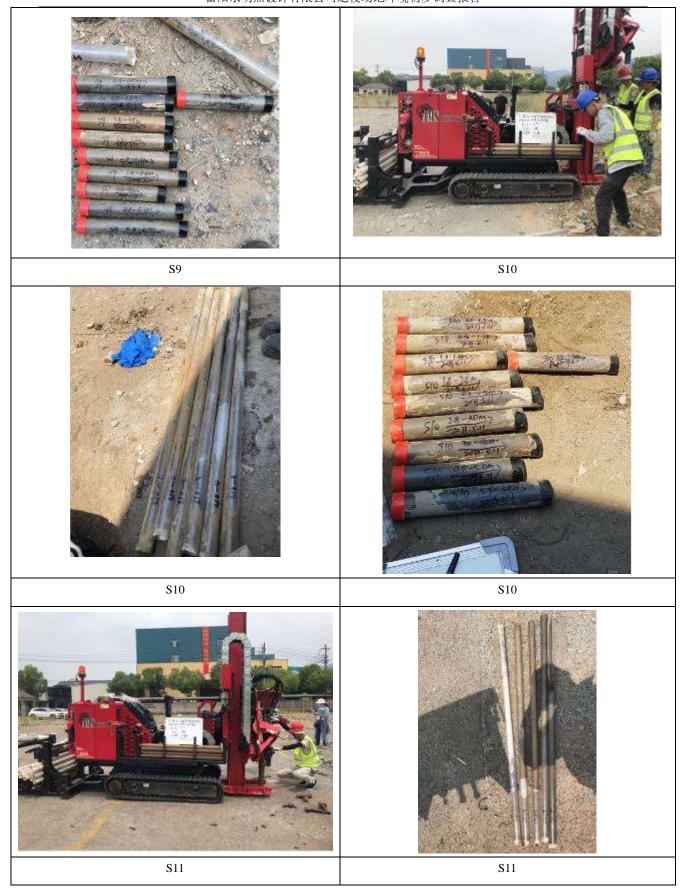
场地内土壤样品的采集设备为美国 Powerprobe 9410 取样钻机,采用直接贯入式采样技术和双套管土壤采样系统采集不扰动的特定深度原状连续土样,通过外套管减少土壤采样时交叉污染机会,外套管直径 60mm。贯入内外钻杆与钻头至特定采样深度时开始样品采集,移除外钻头并拉出内杆与内钻头,以采样衬管固定塞连接内杆与采样衬管,置入外套管并组装配件,液压向地下推进外套管,拔出内杆与土壤样品,获得连续不扰动原装土壤样品。本项目土孔最大钻进深度为地面以下 6m。

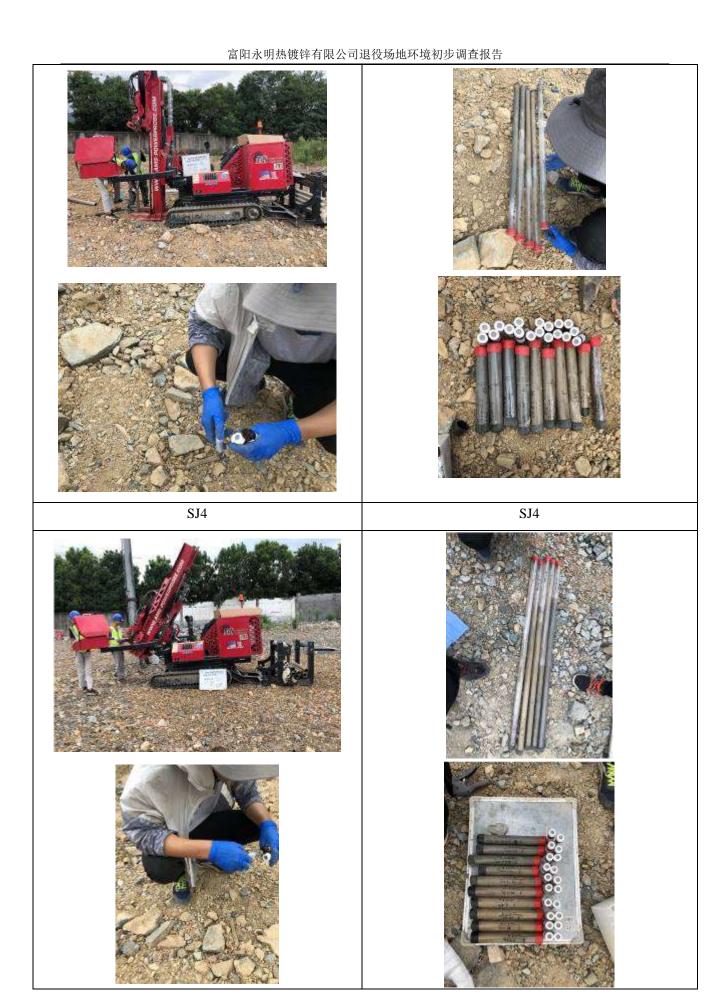
土壤钻孔及采集的原状土壤样品如下。

S0 (对照点)

S0

S1


富阳永明热镀锌有限公司退役场地环境初步调查报告



富阳永明热镀锌有限公司退役场地环境初步调查报告

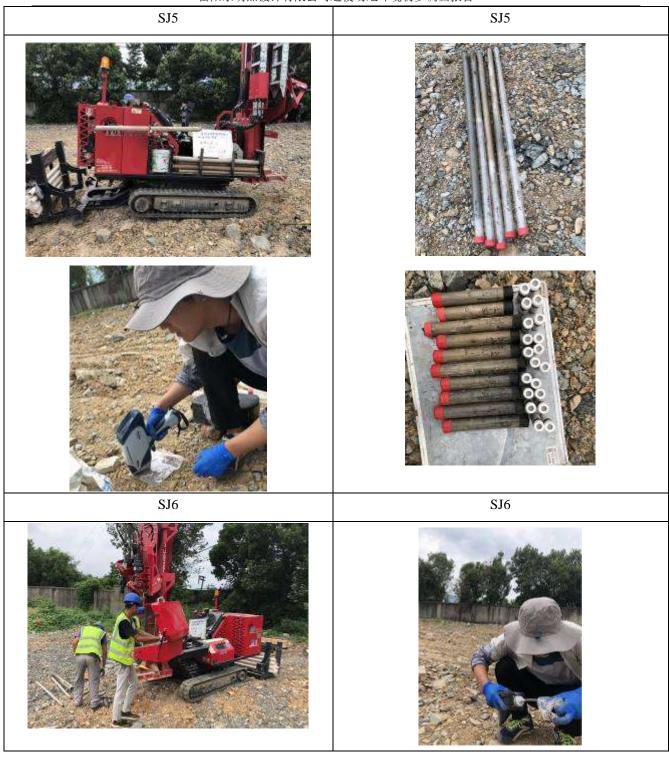


图5-1 土壤现场采样照片

三、土壤样品编录和土样筛选

采集的PVC采样管,使用专业工具切开,在0.5 m以及后续每隔0.5~1.0 m分别采集 少量土壤装入密实袋中。为了现场判断采样区潜在污染情况,应用PID和XRF进行现场 快速检测。PID半定量测定密实袋中顶空挥发性有机物浓度;使用XRF半定量测定各个密实袋土样中金属元素浓度。这些便携式快速检测仪器在野外使用前,需在实验室进行校正。同时,现场工程师对土壤进行观察,记录土壤类型、颜色、湿度等信息,并通过颜色和气味等观察是否有污染迹象。综合PID和XRF读数,现场观察以及采样计划要求,从每个土孔中的表层、包气带、饱和带各至少选取1个土壤样品送实验室进行分析。

取样管截取后,立即使用特氟龙膜将两端贴封,并用盖盖紧,盖与管之间的缝隙处再使用石蜡膜缠绕封紧,保证样品中污染物不会挥发出来。管体上贴上标签,注明样品编号、采样日期、采样人等信息。样品制备完成后在48小时内送至实验室分析。

样品装运前核对采样记录表、样品标签等,如有缺漏项和错误处,应及时补齐和修 正后方可装运。样品运输过程中严防损失、混淆或玷污。样品送到实验室后,采样人员 和实验室样品管理员双方同时清点核实样品,并在样品流转单上签字确认。

图 5-2 现场快速检测照片

四、地下水监测井安装和样品采集

1、地下水采样井建设

地下水监测井的建设根据《地下水环境监测技术规范》(HJ/T 164-2004)进行,新 凿监测井一般在地下潜水层即可。同土壤样品采样选择PowerProbe 9410型钻机进行地下 水孔钻探。

建井之前采用GPS精确定位地下水监测点位置,采样井建设过程包括钻孔、下管、填充滤料、密封止水、成井洗井和填写成井记录单等步骤,具体包括以下内容:

(1) 钻孔

采用PowerProbe 9410型钻机进行地下水孔钻探,钻孔达到拟定深度后进行钻孔掏洗,以清除钻孔中的泥浆和钻屑,然后静置2h-3h并记录静止水位。

(2) 下管

下管前校正孔深,按先后次序将井管逐根测量,确保下管深度和滤水管安装位置准确无误。井管下放速度不宜太快,中途遇阻时可适当上下提动和转动井管,必要时将井管提出,清除孔内障碍后再下管。下管完成后,将其扶正、固定,井管与钻孔轴心重合。

(3) 滤料填充

将石英砂滤料缓慢填充至管壁与孔壁中的环形空隙内,沿着井管四周均匀填充,避免从单一方位填入,一边填充一边晃动井管,防止滤料填充时形成架桥或卡锁现象。滤料填充过程也要进行测量,确保滤料填充至设计高度。

(4) 密封止水

密封止水从滤料层往上填充,直至距离地面50 cm。本项目采用膨润土作为止水材料,每填充10 cm需向钻孔中均匀注入少量的清洁水,填充过程中进行测量,确保止水材料填充至设计高度,静置待膨润土充分膨胀、水化和凝结。

(5) 成井洗井

监测井建成后,需要清洗监测井,以去除细颗粒物质堵塞监测井并促进监测井与监测区域之间的水力连通。本项目地下水采样井建成24 h后,采用贝勒管进行洗井。

使用PowerProbe 9410型钻机钻井设备进行洗井,每次清洗过程中抽取的地下水,进行pH值和温度的现场测试。洗井时控制流速,洗井过程持续到取出的水不混浊,细微土壤颗粒不再进入水井;成井洗井达标直观判断水质基本上达到水清砂净,同时采用便携式检测仪器监测pH值、电导率、氧化还原电位等参数,洗出的每个井容积水的pH值、温度和电导率连续三次的测量值误差需小于10%,洗井工作才能完成。

(6) 填写成井记录

成井后测量记录点位坐标,填写成井记录、地下水采样井洗井记录单;成井过程中 对井管处理(滤水管钻孔或割缝、包网处理、井管连接等)、滤料填充和止水材料、洗 井作业和洗井合格出水等关键环节或信息拍照记录。

此次地下水取样用直接贯入式钻井,建简易井管取水样,示意图见下图。

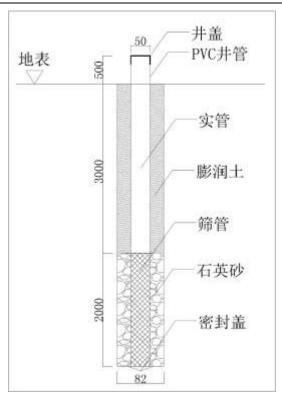


图 5-3 地下水监测井示意图

2、地下水采样前洗井

采样前洗井至少在成井洗井工作48 h后才能开始,采样前洗井避免对井内水体产生气提、气曝等扰动。

本项目采样贝勒管进行洗井,贝勒管汲水位置为井管底部,控制贝勒管缓慢下降和 上升,原则上洗井水体积达到3~5倍滞水体积。

洗井前对pH计、溶解氧仪、电导率和氧化还原电位仪等检测仪器进行现场校正,校正记录填写在《现场仪器校准记录表》。

开始洗井时,以小流量抽水,记录抽水开始时间,同时洗井过程中每隔5 min读取并记录pH、温度(T)、电导率、溶解氧(DO)、氧化还原电位(ORP)及浊度,连续3次采样达到以下要求结束洗井:

- ①pH 变化范围为±0.1;
- ②温度变化范围为±0.5 °C;
- ③电导率变化范围为±3%;
- ④DO 变化范围为±10%, 当DO<2.0 mg/L时, 其变化范围为±0.2 mg/L;
- ⑤ORP 变化范围±10 mV;
- ⑥10 NTU<浊度<50 NTU时, 其变化范围应在±10%以内; 浊度<10 NTU时, 其

变化范围为±1.0 NTU; 若含水层处于粉土或粘土地层时,连续多次洗井后的浊度≥50 NTU时,要求连续三次测量浊度变化值小于5 NTU。

若现场测试参数无法满足以上要求,或不具备现场测试仪器的,则洗井水体积达到 3~5 倍采样井内水体积后即可进行采样。

采样前洗井过程填写《地下水建井洗井——采样记录表》。采样前洗井过程中产生的废水,统一收集处置。

3、地下水采样

(1) 样品采集操作

采样洗井达到要求后,测量并记录水位——监测井井管顶端到稳定地下水水位间的距离(即地下水水位埋深)。若地下水水位变化小于10 cm,则可以立即采样;若地下水水位变化超过10 cm,应待地下水位再次稳定后采样,若地下水回补速度较慢,原则上应在洗井后2 h内完成地下水采样。

对于未添加保护剂的样品瓶,地下水采样前需用待采集水样润洗2~3次。

使用贝勒管进行地下水样品采集时,缓慢沉降或提升贝勒管。取出后,通过调节贝勒管下端出水阀,使水样沿瓶壁缓缓流入瓶中,直至在瓶口形成一向上弯月面,旋紧瓶盖,避免采样瓶中存在顶空和气泡。

地下水装入样品瓶后,记录样品编号、采样日期和采样人员等信息,贴到样品瓶上。 地下水采集完成后,样品瓶用泡沫塑料袋包裹,并立即放入现场装有冷冻蓝冰的样 品箱内保存,装箱用泡沫塑料等分隔以防破损。

取水使用一次性贝勒管,一井一管,尽量避免贝勒管的晃动对地下水的扰动。本项目坚持"一井一管"的原则,避免交叉污染。

地下水采样时根据《地下水环境监测技术规范》(HJ/T 164-2004)的要求采集,不同的分析指标分别取样,保存于不同的容器中,并根据不同的分析指标在水样中加入相应的保存剂。

水样采集后立即置于放有蓝冰的保温箱内(约4℃以下)避光保存。地下水取样容器和固定剂按照《地下水环境监测技术规范》(HJ/T 164-2004)和《地下水质量标准》(GB/T 14848-2017)的标准执行。

(2) 地下水平行样采集要求

地下水平行样应不少于地块总样品数的10%,每个地块至少采集1份。本项目共采集1份地下水平行样(密码样)。

(3) 空白样品

每批次采样均带入全程空白样品。本项目地下水采集1天,共形成1组现场空白、运输空白、淋洗空白。

(4) 其他要求

地下水采样过程中做好人员安全和健康防护,佩戴安全帽和一次性的个人防护用品 (口罩、手套等),废弃的个人防护用品等垃圾集中收集处置。

图5-4 地下水样品采集现场工作照片

五、样品记录

- (1) 项目概况:项目名称、项目编号等;
- (2) 采样点位概况:点位编号、采样位置(经纬度)、采样深度、点位基本描述、点位示意图等;

- (3) 采样环境: 采样日期和时间、气象条件等;
- (4) 土壤样品描述: 土壤分层情况、土壤质地、土壤颜色和气味、土壤湿度等;
- (5) 地下水采样记录: 井深、水位、pH 值、电导率、溶解氧、氧化还原点位、采样容器等;
 - (6) 现场便携式仪器测定结果;
 - (7) 人员: 采样人、记录人等。

六、样品交接与运输

装运前核对:采样结束后现场逐项检查,如采样记录表、样品标签等,如有缺项、 漏项和错误处,应及时补齐和修正后方可装运。

样品运输:样品运输过程中严防损失、混淆或沾污,设置运输空白样,并在样品低温(4°C)暗处冷藏条件下尽快送至实验室分析测试。

样品交接:样品送到实验室后,采样人员和实验室样品管理员双方同时清点核实样品,并在样品流转单上签字确认,样品流转单一式四份(自复写),由采样人员填写并保存一份,样品管理员保存一份,交分析人员两份,其中一份存留。

5.2.3 样品采集质量控制

样品的质量控制措施严格按照《污染场地环境监测技术导则》中的技术规范进行操作:

- (1)为防止交叉污染,在每个土壤采样点和地下水监测井钻探前,钻探设备钻头及采样工具均用纸擦拭两遍,然后再用蒸馏水清洗两遍。在钻取不同深度的土壤样品时,钻头用蒸馏水清洗两遍。
- (2) 所有土壤样品采集后立即用特氟龙膜将两端贴封,并用盖盖紧,盖与管之间的缝隙处再使用特氟龙膜缠绕封紧,保证样品中污染物不会挥发出来。地下水样装满采样瓶后,盖紧并用特氟龙膜缠绕封紧。所有样品放置在冷藏箱保存并在48h内运送至实验室。
- (3)样品装运前核对采样记录表、样品标签等,如有缺漏项和错误处,及时补齐和修正后方可装运。样品运输过程中严防损失、混淆或玷污。样品送到实验室后,采样人员和实验室样品管理员双方同时清点核实样品,并在样品流转单上签字确认。

5.2.4 送检样品信息记录

本次场地环境调查根据现场对土壤颜色的观察、土层性质及快速检测结果, 送检了

87个土壤样品,5个地下水样品(不含质控样)。另外,现场采集的质控样品送检4个土壤平行样、6个土壤密码平行样,1个地下水密码平行样,现场空白、运输空白、淋洗空白1组。

具体送检样品信息见下表。

表 5-5 土壤和地下水送检样品信息一览表

点位编号	样品介 质	样品编号	钻探深度	土质特征	
S1		S1-0.5m	0-0.5m	0-1m: 杂填土, 黄色、潮、松散, 无异味,	
		S1-2.0m	1.0-2.0m	含砂石、碎石;	
	上梅	S1-3.0m	2.0-3.0m	1.0-2.0m: 砂壤土, 黄、潮、稍密、无异	
	土壤	S1-6.0m	5.0-6.0m	味,含大量砂石; 2.0-6.0m: 粉粘,灰色、潮、密实,无异 味。	
		S2-0.5m	0-0.5m	0-1m: 杂填土, 黄色、潮、稍密, 无异味,	
		S2-1.5m	1.0-1.5m	含大量碎石;	
82	土壤	S2-1.5m (DUP)	1.0-1.5m	1.0-2.0m: 砂壤土,黄灰色、潮、稍密、	
S2	工場	S2-3.0m	2.5-3.0m	无异味,含大量泥砂;	
		S2-6.0m	5.0-6.0m	2.0-6.0m: 粉粘,灰色、潮、密实,无异味。	
		S3-0.5m	0-0.5m		
	مد ا	S3-1.5m	1.0-1.5m	0-3.0m: 杂填土,黄色、潮、稍密,无异	
S3	土壤	S3-3.0m	2.5-3.0m	味,含大量砂石; 3.0-6.0m; 粉粘,灰、潮、密实,无异味。	
		S3-6.0m	5.0-6.0m	5.0 0.000. 似相,八、相、田人,几开水。	
	土壤	S4-0.5m	0-0.5m	0-1.5m: 粘土,灰色、潮、密实,无异味;	
		S4-1.5m	1.0-1.5m	1.5-2.0m: 砂壤土,灰色、湿、稍密、无	
S4		S4-3.0m	2.5-3.0m	异味,含大量砂石;	
		S4-6.0m	5.0-6.0m	2.0-6.0m: 粉粘,灰色、潮、密实,无异味。	
	土壤	S5-0.5m	0-0.5m	 0-0.5m: 杂填土,黄色、潮、松散,无异	
		S5-1.5m	1.0-1.5m	味,大量砂石;	
S5		S5-1.5m (DUP)	1.0-1.5m	() () () () () () () () () ()	
		S5-3.0m	2.5-3.0m	味,颜色由黄变灰。	
		S5-6.0m	5.0-6.0m		
S6	土壤	S6-0.5m	0-0.5m	 0-2.5m: 杂填,黄、湿、稍密,无异味,	
		S6-1.5m	1.0-1.5m	含大量砂石;	
		S6-4.0m	3.0-4.0m	2.5-6.0m: 粉粘,灰色、潮、密实,无异	
		S6-4.0m (DUP)	3.0-4.0m	味。	
		S6-6.0m	5.0-6.0m	7100	
S7	土壤	S7-0.5m	0-0.5m	0-1.5m: 杂填,黄、湿、松散,无异味,	
		S7-1.5m	1.0-1.5m	含大量砂石;	
		S7-3.0m	2.5-3.0m	1.5-6.0m: 粉粘,灰色、潮、密实,无异	

点位编号	样品介 质	样品编号	钻探深度	土质特征
		S7-6.0m	5.0-6.0m	味。
		S8-0.5m	0-0.5m	0-2.0m: 杂填, 黄、重潮、松散, 无异味,
90	1 1===	S8-1.5m	1.0-1.5m	含大量泥砂、碎石;
S8	土壤	S8-3.0m	2.5-3.0m	2.0-6.0m: 粉粘,灰色、潮、密实,无异
		S8-6.0m	5.0-6.0m	味。
		S9-0.5m	0-0.5m	0-3.0m: 杂填,黄、重潮、松散,无异味,
go	1.4亩	S9-1.5m	1.0-1.5m	含大量泥砂、碎石;
S9	土壤	S9-3.0m	2.5-3.0m	3.0-6.0m: 粉粘,灰色、潮、密实,无异
		S9-6.0m	5.0-6.0m	味。
		S10-0.5m	0-0.5m	0-3.0m: 杂填,黄、湿、松散,无异味,
010	1.4亩	S10-1.5m	1.0-1.5m	含大量砂石;
S10	土壤	S10-3.0m	2.5-3.0m	3.0-6.0m: 粉粘,灰色、潮、密实,无异
		S10-6.0m	5.0-6.0m	味。
		S11-0.5m	0-0.5m	
		S11-1.5m	1.0-1.5m	0-0.5m: 杂填,黄、干、松散,无异味,
S11	土壤	S11-1.5m (DUP)	1.0-1.5m	含大量砂石; - 0.5-6.0m: 粉粘,黄灰色、潮、稍密,无
		S11-3.0m	2.5-3.0m	日本
		S11-6.0m	5.0-6.0m	开外,颜凸田英文外。
		S12-0.5m	0-0.5m	0-1.0m: 杂填, 黄、干、松散, 无异味,
		S12-1.5m	1.0-1.5m	含大量砂石;
S12	土壤	S12-3.0m	2.5-3.0m	1.0-2.0m: 砂壤土,灰、潮、稍密,无异
512	工农	S12-6.0m	5.0-6.0m	味,含大量砂石; 2.0-6.0m: 粉粘,灰色、湿、稍密,无异 味,含水率较高。
		SJ1-0-0.5m	0-0.5m	0-0.7m: 杂填,灰、干、松散,无异味,
		SJ1-1.5-2.0m	1.5-2.0m	含碎石、砂等;
OT1	1 4 4 4 4	SJ1-2.0-2.5m	2.0-2.5m	0.7-3.5m: 粉质粘土, 棕、潮、稍密, 无
SJ1	土壤	SJ1-3.0-4.0m	3.0-4.0m	异味,含铁锰氧化物;
		SJ1-5.0-6.0m	5.0-6.0m	3.5-6.0m: 淤泥质粘土,灰、湿、稍密, 无异味,含铁锰氧化物,以粘土为主。
		SJ2-0-0.5m	0-0.5m	0-0.5m: 杂填,灰、干、松散,无异味,
		SJ2-1.0-1.5m	1.0-1.5m	含碎石、石子、砖块;
SJ2	土壤	SJ2-2.0-2.5m	2.0-2.5m	0.5-3.3m: 粉质粘土, 棕、潮、稍密, 无
332	上按	SJ2-3.0-4.0m	3.0-4.0m	异味,含铁锰氧化物;
		SJ2-5.0-6.0m	5.0-6.0m	3.3-6.0m: 淤泥质粘土,棕、潮、稍密, 无异味,含铁锰氧化物,以粘土为主。
		SJ3-0-0.5m	0-0.5m	0-0.7m: 杂填,灰、干、松散,无异味,
		SJ3-1.0-1.5m	1.0-1.5m	含碎石、石子、砖块;
SJ3	土壤	SJ3-2.0-2.5m	2.0-2.5m	0.7-3.8m: 粉质粘土, 棕、潮、稍密, 无
212	上楼	SJ3-3.0-4.0m	3.0-4.0m	异味,含铁锰氧化物;
		SJ3-5.0-6.0m	5.0-6.0m	3.8-6.0m: 淤泥质粘土, 棕、潮、稍密, 无异味, 含铁锰氧化物, 以粘土为主。

点位编号	样品介 质	样品编号	钻探深度	土质 特 征
		SJ4-0-0.5m	0-0.5m	0-0.6m: 素填土, 棕、干、松散, 无异味,
		SJ4-1.0-1.5m	1.0-1.5m	含碎石、石子等;
SJ4	土壤	SJ4-2.0-2.5m	2.0-2.5m	0.6-3.8m: 粉质粘土, 棕、潮、稍密, 无
234	工物	SJ4-3.0-4.0m	3.0-4.0m	异味,含铁锰氧化物;
		SJ4-5.0-6.0m	5.0-6.0m	3.8-6.0m: 淤泥质粘土,棕、潮、稍密, 无异味,含铁锰氧化物,以粘土为主。
		SJ5-0-0.5m	0-0.5m	0-1.4m: 杂填土, 棕、干、松散, 无异味,
		SJ5-1.0-1.5m	1.0-1.5m	含碎石、石子、砖头;
SJ4	土壤	SJ5-2.0-2.5m	2.0-2.5m	1.4-3.7m: 粉质粘土, 棕、潮、稍密, 无
234	工物	SJ5-3.0-4.0m	3.0-4.0m	异味,含铁锰氧化物;
		SJ5-5.0-6.0m	5.0-6.0m	3.7-6.0m: 淤泥质粘土,棕、潮、稍密, 无异味,含铁锰氧化物,以粘土为主。
		SJ6-0-0.5m	0-0.5m	0-0.8m: 杂填土, 棕、干、松散, 无异味,
		SJ6-1.0-1.5m	1.0-1.5m	含碎石、石子、砖头;
SJ6	土壌	SJ6-2.0-2.5m	2.0-2.5m	0.8-3.6m: 粉质粘土, 棕、潮、稍密, 无
210	上表	SJ6-3.0-4.0m	3.0-4.0m	异味,含铁锰氧化物;
		SJ6-5.0-6.0m	5.0-6.0m	3.6-6.0m: 淤泥质粘土,灰、潮、稍密, 无异味,含铁锰氧化物。
		SJ7-0-0.5m	0-0.5m	0-0.7m: 杂填土, 棕、干、松散, 无异味,
		SJ7-1.0-1.5m	1.0-1.5m	含碎石、石子、砖头;
SJ7	土壌	SJ7-2.0-2.5m	2.0-2.5m	0.7-3.7m: 粉质粘土,棕、潮、稍密,无
237	上表	SJ7-3.0-4.0m	3.0-4.0m	异味,含铁锰氧化物;
		SJ7-5.0-6.0m	5.0-6.0m	3.7-6.0m: 淤泥质粘土,灰、湿、稍密, 无异味,含铁锰氧化物,以粘土为主。
		SJ8-0-0.5m	0-0.5m	0-0.6m: 杂填土, 棕、干、松散, 无异味,
		SJ7-1.0-1.5m	1.0-1.5m	含碎石、石子、砖头;
CIO	上 +神	SJ7-2.0-2.5m	2.0-2.5m	0.6-3.5m: 粉质粘土,棕、潮、稍密,无
SJ8	土壤	SJ7-3.0-4.0m	3.0-4.0m	异味,含铁锰氧化物;
		SJ7-5.0-6.0m	5.0-6.0m	3.5-6.0m: 淤泥质粘土,灰、湿、稍密, 无异味,含铁锰氧化物,以粘土为主。
		S-M-D1		
		S-M-D2		
1.4亩/シ70	1 元 仁 1平	S-M-D3		
土壤密码	5千1丁件	S-M-D4		土壤现场密码样
		S-M-D5		
		S-M-D6		
J1	地下水	J1	6.0m	地下水位埋深: 1.0m
J2	地下水	J2	6.0m	地下水位埋深: 0.9m
J3	地下水	Ј3	6.0m	
J3 DNAPL	地下水	J3 DNAPL	6.0m	地下水位埋深: 1.5m
FB	地下水	FB		全程空白

富阳永明热镀锌有限公司退役场地环境初步调查报告

点位编号	样品介 质	样品编号	钻探深度	土质特征		
LXY	地下水	LXY		淋洗空白		
W-M-D1	地下水	W-M-D1		现场密码样		
		DZ1-0.5m	0-0.5m	0-1.5m: 粘土,黄棕、潮、密实,无异味;		
DZ1	土壤对	DZ1-1.5m	1.0-1.5m	1.5-2.5m: 粉粘, 棕、潮、稍密, 无异味;		
DZI	照点	照点 DZ1-6.0m 5.0-6.0m	2.5-6.0m: 砂壤土,灰,湿、稍密,无异 味。			
DZW1	地下水 对照点	DZ	6.0m	地下水埋深: 1.7m		

5.3 实验室分析

5.3.1 检测单位

本项目中土壤、地下水样品的采集与实验室检测工作由江苏实朴检测服务有限公司和上海实朴检测技术服务有限公司承担。实朴检测是一家以土壤和地下水为特色的第三方检测服务平台,总部位于上海。实朴检测上海实验室2013年建立,相继在南京、石家庄、广州、成都、天津等地布点,截止到2018年底全国有6个实验室。实验室主要提供土壤、地下水、环境空气、废气和噪声采样和分析,设备主要有电感耦合等离子体质谱仪ICP/MS (Agilent 7900),吹扫捕集气相色谱质谱仪P&T GC/MS (Agilent 5975),气相色谱质谱仪 GC/MS (Agilent 5977),气相色谱仪GC (Agilent 7890),液相色谱仪HPLC (Agilent 1200),原子吸收光度计AA (SHIMAZU6300C),原子荧光光度计AFS,紫外可见光分光光度计UV/Vis和毒性浸出配套设备等。江苏实朴和上海实朴CMA资质证书及检测能力见附件11。

5.3.2 实验室分析

1、分析方法

实验室优先选用《建设用地土壤污染风险管控标准(试行)》(GB 36600-2018) 等国家标准中规定的检测方法,其次选用国际标准方法和行业标准,所采用方法均通过 CMA 认可。

CMA计量认证是根据中华人民共和国计量法的规定,由省级以上人民政府计量行政部门对检测机构的检测能力及可靠性进行的一种全面的认证及评价。这种认证对象是所有对社会出具公正数据的产品质量监督检验机构及其他各类实验室,取得计量认证合格证书的检测机构,允许其在检验报告上使用CMA标记;有CMA标记的检验报告具有法律效力。

本项目出具的检测报告所包含的检测指标均具有CMA资质。

本项目检测项目均采用最新检测标准,未采用过期无效标准。土壤和地下水检测标准见表5-6。

2、检测仪器设备及检测方法

为确保检测结果溯源到国家/国际计量基准,保证检测结果准确、有效,本项目主要检测仪器设备均经过检定/校准,仪器设备均符合标准要求。

表 5-6 土壤样品检测参数及方法

序号	检测参数	检测方法	检出限	单位
1.	干物质	НЈ 613-2011	-	%
2.	рН	NY/T 1377-2007	-	无量纲
3.	氰化物	НЈ 745-2015	0.04	mg/kg
4.	六价铬	USEPA 3060A-1996 & USEPA 7196A-1992	0.5	mg/kg
5.	铜	НЈ 491-2019	1	mg/kg
6.	铬	НЈ 491-2019	4	mg/kg
7.	镍	НЈ 491-2019	3	mg/kg
8.	锌	НЈ 491-2019	1	mg/kg
9.	铅	GB/T 17141-1997	0.1	mg/kg
10.	镉	GB/T 17141-1997	0.01	mg/kg
11.	砷	GB/T 22105.2-2008	0.01	mg/kg
12.	汞	GB/T 22105.1-2008	0.002	mg/kg
13.	C10-C40	НЈ1021-2019	6	mg/kg
14.	苯	НЈ 605-2011	1.9	μg/kg
15.	甲苯	НЈ 605-2011	1.3	μg/kg
16.	乙苯	НЈ 605-2011	1.2	μg/kg
17.	间&对-二甲苯	НЈ 605-2011	1.2	μg/kg
18.	苯乙烯	НЈ 605-2011	1.1	μg/kg
19.	邻二甲苯	НЈ 605-2011	1.2	μg/kg
20.	1,2-二氯丙烷	НЈ 605-2011	1.1	μg/kg
21.	氯甲烷	НЈ 605-2011	1.0	μg/kg
22.	氯乙烯	НЈ 605-2011	1.0	μg/kg
23.	1,1-二氯乙烯	НЈ 605-2011	1.0	μg/kg
24.	二氯甲烷	НЈ 605-2011	1.5	μg/kg
25.	反-1,2-二氯乙烯	НЈ 605-2011	1.4	μg/kg
26.	1,1-二氯乙烷	НЈ 605-2011	1.2	μg/kg
27.	顺-1,2-二氯乙烯	НЈ 605-2011	1.3	μg/kg
28.	1,1,1-三氯乙烷	НЈ 605-2011	1.3	μg/kg
29.	四氯化碳	НЈ 605-2011	1.3	μg/kg
30.	1,2-二氯乙烷	НЈ 605-2011	1.3	μg/kg
31.	三氯乙烯	НЈ 605-2011	1.2	μg/kg
32.	1,1,2-三氯乙烷	НЈ 605-2011	1.2	μg/kg
33.	四氯乙烯	НЈ 605-2011	1.4	μg/kg
		•		•

富阳永明热镀锌有限公司退役场地环境初步调查报告

序号	检测参数	检测方法	检出限	单位
34.	1,1,1,2-四氯乙烷	НЈ 605-2011	1.2	μg/kg
35.	1,1,2,2-四氯乙烷	НЈ 605-2011	1.2	μg/kg
36.	1,2,3-三氯丙烷	НЈ 605-2011	1.2	μg/kg
37.	氯苯	НЈ 605-2011	1.2	μg/kg
38.	1,4-二氯苯	НЈ 605-2011	1.5	μg/kg
39.	1,2-二氯苯	НЈ 605-2011	1.5	μg/kg
40.	氯仿	НЈ 605-2011	1.1	μg/kg
41.	苯酚	НЈ 834-2017	0.1	mg/kg
42.	2-氯酚	НЈ 834-2017	0.06	mg/kg
43.	萘	НЈ 834-2017	0.09	mg/kg
44.	苯并(a)蒽	НЈ 834-2017	0.1	mg/kg
45.	薜	НЈ 834-2017	0.1	mg/kg
46.	苯并(b)荧蒽	НЈ 834-2017	0.2	mg/kg
47.	苯并(k)荧蒽	НЈ 834-2017	0.1	mg/kg
48.	苯并(a)芘	НЈ 834-2017	0.1	mg/kg
49.	茚并(1,2,3-cd)芘	НЈ 834-2017	0.1	mg/kg
50.	二苯并(a,h)蒽	НЈ 834-2017	0.05	mg/kg
51.	硝基苯	НЈ 834-2017	0.09	mg/kg
52.	苯胺	НЈ 834-2017	0.5	mg/kg

表 5-7 水质样品检测参数及方法

序号	检测参数	检测方法	检出限	单位
1.	рН	GB/T 5750.4-2006(5.1)	-	无量纲
2.	臭和味	GB/T5750.4-2006(3.1)	-	-
3.	色度	GB/T 5750.4-2006(1.1)	5	度
4.	挥发酚	GB/T 5750.4-2006(9.1)	0.002	mg/L
5.	氰化物	GB/T 5750.5-2006(4.1)	0.002	mg/L
6.	六价铬	GB/T 5750.6-2006(10.1)	0.004	mg/L
7.	石油类	НЈ 970-2018	0.01	mg/L
8.	铜	НЈ 700-2014	0.08	μg/L
9.	铬	НЈ 700-2014	0.11	μg/L
10.	镍	НЈ 700-2014	0.06	μg/L
11.	锌	НЈ 700-2014	0.67	μg/L
12.	铅	НЈ 700-2014	0.09	μg/L
13.	镉	НЈ 700-2014	0.05	μg/L

富阳永明热镀锌有限公司退役场地环境初步调查报告

序号	检测参数	检测方法	检出限	单位
14.	砷	НЈ 700-2014	0.12	μg/L
15.	汞	НЈ 694-2014	0.04	μg/L
16.	苯	НЈ 639-2012	1.4	μg/L
17.	甲苯	НЈ 639-2012	1.4	μg/L
18.	乙苯	НЈ 639-2012	0.8	μg/L
19.	间&对-二甲苯	НЈ 639-2012	2.2	μg/L
20.	苯乙烯	НЈ 639-2012	0.6	μg/L
21.	邻二甲苯	НЈ 639-2012	1.4	μg/L
22.	1,2-二氯丙烷	НЈ 639-2012	1.2	μg/L
23.	氯甲烷	USEPA 8260D-2018	5	μg/L
24.	氯乙烯	НЈ 639-2012	1.5	μg/L
25.	1,1-二氯乙烯	НЈ 639-2012	1.2	μg/L
26.	二氯甲烷	НЈ 639-2012	1.0	μg/L
27.	反-1,2-二氯乙烯	НЈ 639-2012	1.1	μg/L
28.	1,1-二氯乙烷	НЈ 639-2012	1.2	μg/L
29.	顺-1,2-二氯乙烯	НЈ 639-2012	1.2	μg/L
30.	1,1,1-三氯乙烷	НЈ 639-2012	1.4	μg/L
31.	四氯化碳	НЈ 639-2012	1.5	μg/L
32.	1,2-二氯乙烷	НЈ 639-2012	1.4	μg/L
33.	三氯乙烯	НЈ 639-2012	1.2	μg/L
34.	1,1,2-三氯乙烷	НЈ 639-2012	1.5	μg/L
35.	四氯乙烯	НЈ 639-2012	1.2	μg/L
36.	1,1,1,2-四氯乙烷	НЈ 639-2012	1.5	μg/L
37.	1,1,2,2-四氯乙烷	НЈ 639-2012	1.1	μg/L
38.	1,2,3-三氯丙烷	НЈ 639-2012	1.2	μg/L
39.	氯苯	НЈ 639-2012	1.0	μg/L
40.	1,4-二氯苯	НЈ 639-2012	0.5	μg/L
41.	1,2-二氯苯	НЈ 639-2012	0.5	μg/L
42.	氯仿	НЈ 639-2012	1.4	μg/L
43.	2-氯酚	USEPA 8270E-2018	0.5	μg/L
44.	硝基苯	USEPA 8270E-2018	0.5	μg/L
45.	苯胺	USEPA 8270E-2018	2.5	μg/L
46.	萘	НЈ 478-2009	0.011	μg/L
47.	苯并(a)蒽	НЈ 478-2009	0.007	μg/L
48.	薜	НЈ 478-2009	0.008	μg/L

富阳永明热镀锌有限公司退役场地环境初步调查报告

序号	检测参数	检测方法	检出限	单位
49.	苯并(b)荧蒽	НЈ 478-2009	0.003	μg/L
50.	苯并(k)荧蒽	НЈ 478-2009	0.004	μg/L
51.	苯并(a)芘	НЈ 478-2009	0.004	μg/L
52.	茚并(1,2,3-c,d)芘	НЈ 478-2009	0.003	μg/L
53.	二苯并(a,h)蒽	НЈ 478-2009	0.003	μg/L

5.4 质量保证和质量控制

5.4.1 质量保证与质量控制体系

为保证整个调查采样与实验室检测采样全过程的质量,在整个污染场地调查、采样、现场检测和实验室检测分析过程中,实朴检测针对影响检测结果的不确定因素(如检测人员、仪器设备、标准物质、检测方法、样品和环境条件等),进行了严格的质量控制,并建立了一套质量保证体系,详见下图。

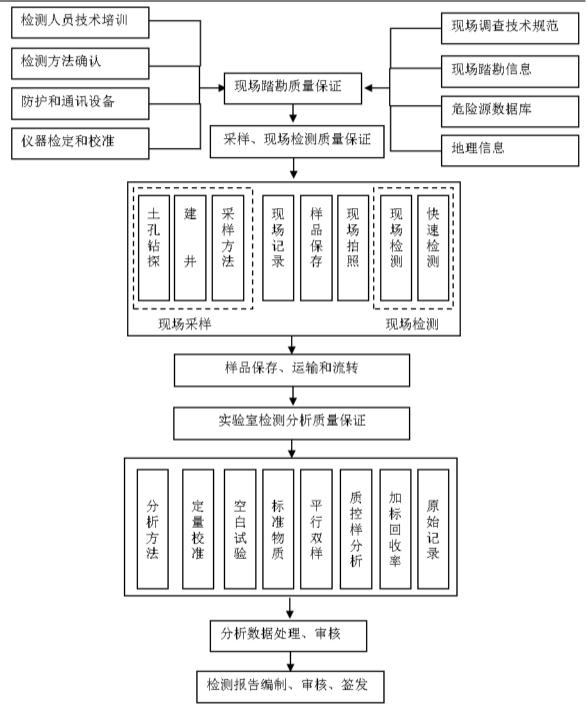


图5-3 质量控制体系

5.4.2 现场采样质量控制措施

为了确保采样和现场检测符合技术要求,保证采集样品的代表性、有效性和完整性,有效控制样品运输和流转过程,规范实施现场检测行为,特对现场采样进行一系列的质量控制工作。

1、采样和现场检测前的准备

(1) 按照委托单位的布点采样方案,由环境部负责人安排采样/现场检测人员及采

样用车辆进行采样和现场检测,由项目负责人带队安排工作,明确工作组内人员任务分 工和质量考核要求。

项目负责人为具有2年以上污染地块调查工作经验的专业技术人员,采样/现场检测人员均具有环境、土壤等相关专业知识,熟悉采样流程和操作规程,掌握土壤和地下水采样的相关技术规定和质量管理要求,掌握相关设备的操作方法,经过采样和现场检测的专项技术培训,考核合格,持证上岗。采样/现场检测人员工作认真、遵纪守法、持公正立场,严守样品及相关信息的秘密。

(2)项目负责人制定并确认采样计划,提出采样和现场检测的具体要求。

采样前项目负责人与调查单位负责人提前了解本项目的目的、内容、点位、参数、样品量以及现场情况等,以便后续采样工作准确、顺利地实施。项目负责人与采样/现场检测人员进行技术交流、讲解现场采样要求,布置工作。研究此项目方案的点位、参数、样品数量以及相应检测标准等详细信息,制定符合相关国家规范的采样计划、样品流转方案及实验室检测方案。

(3) 依据前期调查及现场踏勘,准备适合的土壤采样工具。

非扰动采样器用于检测挥发性有机物(VOCs)土壤样品采集,不锈钢或表面镀特氟龙膜的采样铲用于非挥发性和半挥发性有机物(SVOCs)土壤样品采集,塑料铲或竹铲用于检测重金属土壤样品采集。本项目采用不锈钢药匙、竹刀及VOCs取样器(非扰动采样器)采集土壤样品进行土壤采样。

(4) 依据前期调查及现场踏勘,准备适合的地下水采样工具。

根据采样计划,选择适用的洗井设备和地下水采样设备。本项目采用一次性贝勒管采集地下水样品进行地下水采样。

(5) 依据前期调查及现场踏勘,准备适合的现场便携式设备。

依据前期调查及现场踏勘,准备相应的采样设备。本项目需准备PID、XRF、GPS、pH计、电导率仪和氧化还原电位仪等现场快速检测设备。

项目负责人组织采样和现场检测工作各项事宜的准备,确保携带仪器设备正常使用 并准确有效,使用时做好采样器具和设备的日常维护。

采样/现场检测人员检查仪器设备性能规格、电池电量、计量检定或校准有效期等情况,按要求领用仪器设备并做好记录。采样/现场检测人员携带的设备配备专用的设备箱,仪器设备在运输途中做好防震、防尘、防潮等工作,对特殊的设备(如PID、XRF等)应倍加小心。

(6) 准备适合的样品保存设备。

采样/现场检测人员按规定要求选择容器、保存剂或固定剂,样品容器必须按要求清洗干净,并经过必要的检验,同时做好采样辅助设施(如电源线、保温避光贮样装置等)的准备等。本项目样品保存需要样品瓶、样品标签、样品袋、样品箱、蓝冰等,需检查样品箱保温效果、样品瓶种类和数量、样品固定剂数量等。保证携带试剂质量。

(7) 准备个人防护用品。

准备安全防护口罩、一次性防护手套、工作服、工作鞋、安全帽等人员防护用品。

(8) 准备其他采样物品。

保证携带采样记录单、记录表格正确、充足。

准备卷尺、签字笔、圆珠笔、铅笔、资料夹、桌布、药品箱、现场通讯工具等其他采样辅助用品。

采样和现场检测时明确采样和现场检测目的和方法,严格遵守操作规程。

2、采样和现场检测所需物品的运输

采样/现场检测人员将所需的仪器设备按照各自的运输要求装箱、装车,在运输途中 切实最好防震、防尘、防潮工作,确保其在运输期间不致因震动等原因而损坏。

需低温冷藏的试剂,置于冷藏箱(柜)中,并保证在运输过程中始终处于满足其保存要求的低温状态。必须携带的试剂如:固定剂、基体改良液(甲醇),分开放置,搬运中避免撞击、高温或阳光直射,并设防火措施。

3、样品采集

(1) 采样点位

依据采样方案和现场实际情况进行采样,确保样品的代表性、有效性和完整性。在 样品采集之前进行点位确认,记录GPS信息,并做标记。在采样工作实施过程中,由于 现场堆积物及地面硬化影响,在不影响点位密度及用途的情况下,根据现场实际情况对 个别点位进行挪动,并及时更新GPS记录信息。

(2) 样品采集

①土壤样品

现场钻探工作开始前对所有现场使用的仪器进行校正;依照规范操作流程,采样设备在使用前后进行清洗;每个钻孔开始钻探前,对钻探和采样工具进行除污程序。本项目共检测1组全程序空白样品。

采集前后对采样器进行除污和清洗,在样品采集过程中使用一次性防护手套,严禁

用手直接采集土样,不同土壤样品采集更换手套,避免交叉污染。

土壤钻孔前清除地表堆积腐殖质等堆积物;在截取采样管过程中,详细记录土样的 土质、颜色、湿度、气味等性状。

用于检测VOCs的土壤样品单独采集,不允许对样品进行均质化处理,也不得采集混合样。

土壤现场平行样在土样同一位置采集,两者检测项目和检测方法一致,在采样记录单中标注平行样编号及对应的土壤样品编号。**土壤现场平行样应不少于地块总样品数的**10%,每个地块至少采集1份,本项目共采集10个土壤现场平行样,满足质控的要求。

土壤样品采集过程针对采样工具、采集位置、VOCs和SVOCs采样瓶土壤装样过程、 样品瓶编号、现场检测仪器使用等关键信息拍照记录。

②地下水样品

防止采样过程中样品被污染,需单独采集的水样,按要求独立采集,否则视为无效 样品。需加固定剂保存的水质样品,由检测人员在现场加入。**地下水现场平行样应不少** 于地块总样品数的10%,每个地块至少采集1份,本项目共采集1个地下水现场平行样, 满足质控的要求。

在地下水采样前,使用贝勒管对地下水井进行充分洗井;在水样采集前对水样的pH、水温、电导率和水位进行测定;使用实验室提供的清洁采样容器采集水样;在现场对土壤和地下水容器进行标注,标注内容包括日期、监测井编号、项目名称、采集时间以及所需分析的参数;填写样品流转单,样品流转单内容包含项目名称、样品名称、采样时间和检测项目等内容;样品被送达实验室前,所有样品被置于放有蓝冰的保温箱内(约4°C以下)避光保存和运输,确保样品的时效性;样品流转单随样品一并送至实验室;现场技术人员对采样的过程进行详细的拍照记录;现场作业与实验室分析工作皆由专业人员完成。

(3) 样品唯一标识

按照《样品管理程序》中编码规则确定样品唯一标识,确保样品在流转过程中自始至终不会发生混淆。

(4) 原始记录

采样时填写相应采样记录表格,并按标识管理的要求及时正确粘贴每个样品标签, 以免混淆,确保样品标识的唯一性。

采样结束后及时在采样记录表上按《记录控制程序》的要求做好详细采样记录(包

括采样方法、环境条件、采样点位说明、采样人员签名等)。

(5) 采样小组自检

每个土壤及地下水点采样结束后及时进行样点检查,检查内容包括:样点位置、样品重量、样品标签、样品防沾污措施、记录完整性和准确性,同时拍照记录。

每天结束工作前进行日检,日检内容包括: 当天采集样品的数量、检查样品标签以及与记录的一致性。建立采样组自检制度,明确职责和分工。对自检中发现的问题及时进行更正,保证采集的样品具有代表性。

本项目现场样品采集过程均符合《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ/T 164-2004)和《地下水质量标准》(GB/T 14848-2017)中的相关规定。

4、现场检测

现场检测必须按照检测标准进行。现场检测前进行现场检测仪器校准或核查,检查仪器的量值溯源情况。

现场检测人员参加现场检测的全过程,不得擅自中断采样过程,不得离开采样现场,不准吸烟。完整填写现场检测记录表并签名确认。

本项目现场检测过程均符合《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ/T 164-2004)和《地下水质量标准》(GB/T 14848-2017)中的相关规定。

5、采样和现场检测的安全健康要求

实施采样和现场检测前必须按照相关安全技术规范的要求,在高温、高空、海洋和河流等危险场所进行检测时,采取有效的安全措施,以保证现场检测人员的安全及检测仪器设备的安全使用。

- (1)项目负责人在进入作业现场前对所有项目组成员进行安全教育说明,并接受相关企业的安全培训:
- (2) 现场采样、检测人员必须遵守企业安全管理制度, 听从企业陪同人员的安排, 不得随意活动;
 - (3) 现场工作严禁吸烟,不得携带任何危险品进入现场:
- (4) 进入有毒有害或存在危险性的作业场所时,须佩戴相应的个人防护用品,并有其他人陪伴;
 - (5) 检测人员严格按照检测仪器说明书、作业指导书及相关仪器设备的操作规程

等进行操作,严禁违章冒险作业;

- (6) 检测人员所携带的仪器设备,做好运输中的防震、防尘、防潮工作,对于特殊要求的仪器设备小心搬运,防止仪器设备人为损坏;
- (7)为防止现场采样过程中产生环境二次污染问题,本项目对每一个工作环节都制定并执行了有针对性的二次污染防控措施,避免了由于人为原因对环境造成的二次污染。钻孔过程中产生的污染土壤统一收集和处理,对废弃的一次性手套、口罩等个人防护用品按照一般固体废物处置要求进行收集处置。具体二次污染防控措施如下表。

序号	二次污染防控措施	防控目的
1	地质勘查、土壤采样完成后,立即用膨润土将所有取样孔 封死	防止人为的造成土壤、地下水 中污染物的迁移
2	地下水监测井设置时,用防水防腐蚀密封袋,将由建井带 上地面的土壤,进行现场封存	防止污染土壤二次污染环境
3	地下水采样时,用防腐蚀密封桶,将洗井产生的废水,进 行现场封存	防止污染地下水二次污染环境
4	现场工作时,将产生的废弃物垃圾等,收集后带离现场	防止人为产生的废弃物污染环 境

表 5-8 现场采样过程中二次污染防控措施

6、采样和现场检测工作的质量控制

(1) 钻孔深度

钻孔深度依据委托单位提供的该地块布点方案确定,实际钻孔过程中可适当调整。 为防止潜水层底板被意外钻穿,从以下方面做好预防措施:

- ①开展调查前,必须收集区域水文地质资料,掌握潜水层和隔水层的分布、埋深、 厚度和渗透性等信息,初步确定钻孔安全深度。
 - ②优先选择熟悉当地水文地质条件的钻探单位进行钻探作业。
- ③钻探全程跟进套管,在接近潜水层底板时采用较小的单次钻深,并密切观察采出 岩芯情况,若发现揭露隔水层,立即停止钻探;若发现已钻穿隔水层,立即提钻,将钻 孔底部至隔水层投入足量止水材料进行封堵、压实,再完成建井。

钻孔结束后,对于不需设立地下水采样井的钻孔立即封孔并清理恢复作业区地面。

(2) 质量监督员检查

任命具有污染地块调查工作经验、熟悉污染场地调查质量保证与质量控制技术规定的专业技术人员为质量监督员,负责对本项目的采样和现场检测工作进行质量检查。在采样过程中,由业主单位/调查单位的监督员及本公司质量监督员对采样人员在整个采样过程的规范性进行监督和检查,主要包括以下内容:

- ①采样点检查:采样点是否与布点方案一致,采样点的代表性与合理性、采样位置的正确性等:
- ②土壤采样方法检查:采样深度及采样过程的规范性;土壤钻孔采样记录单的完整性,通过记录单及现场照片判定钻探设备选择、钻探深度、钻探操作、钻探过程防止交叉污染以及钻孔填充等是否满足相关技术规定要求;
- ③地下水采样方法检查:采样井建井与洗井记录的完整性,通过记录单及现场照片判定建井材料选择、成井过程、洗井方式等是否满足相关技术规定要求:
 - ④采样器具检查: 采样器具是否满足采样技术规范要求;
- ⑤土壤和地下水样品采集:土壤钻孔采样记录单、地下水采样记录单的完整性,通过记录单及现场照片判定样品采集位置、采集设备、采集深度、采集方式(非扰动采样等)是否满足相关技术规定要求;
- ⑥采样记录检查:样品编号、样点坐标(经纬度)、样品特征(类型、质地、颜色、湿度)、采样点周边信息描述的真实性、完整性等;每个采样点位拍摄的照片是否规范、齐全;
- ⑦样品检查:样品性状、样品重量、样品数量、样品标签、容器材质、保存条件、固定剂添加、样品防玷污措施、记录表一致性等是否满足相关技术规定要求。
- ⑧质量控制样品(**现场平行样、运输空白样、淋洗空白样、全程空白样等**)的采集、数量是否满足相关技术规定要求。
 - (3) 现场原始记录

采样过程中,要求正确、完整地填写样品标签和现场原始记录表。

(4) 采样质控

全程序质量控制主要包括:样品运输质量控制、样品流转质量控制、样品保存质量控制、样品制备质量控制和分析方法选定。

本次样品采集,地下水每批次采样均用全程空白样品进行控制,地下水和土壤样品 采集10%的平行样品。

采集现场质量控制样是现场采样和实验室质量控制的重要手段,质量控制样包括平 行样、空白样和运输样,质控样品的分析数据可从采样到样品运输、贮存和数据分析等 不同阶段反映数据质量。

按照《场地环境监测技术导则》(HJ 25.2-2014)的要求,挥发性有机物浓度较高的样品装瓶后密封在塑料袋中,避免交叉污染,通过运输空白样来控制运输和保存过程

中交叉污染情况。采集土壤样品用于分析挥发性有机物时,每次运输采集至少一个运输空白样,即从实验室带到采样现场后,又返回实验室的与运输过程有关,并与分析无关的样品,以便了解运输途中是否受到污染和样品是否损失。

挥发性有机物等样品分析时,通常要做全程空白试验,以便了解样品采集与流转过程中可能存在沾污情况。每批样品至少做一个全程空白样,全程空白应低于测定下限(方法检出限的4倍)。本项目采样期间测定结果均低于方法检出限,表明采样及分析测试期间不存在污染现象。

综上所述,本项目现场采样、检测均按照《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ/T 164-2004)和和《地下水质量标准》(GB/T 14848-2017)进行,现场采样、样品保存和流转均符合技术规范要求,本项目现场采样规范,现场检测准确、可靠。

5.4.3 样品保存、运输和流转质量控制

1、样品保存、运输和流转概述

土壤和地下水的样品保存、运输和流转按照《场地环境监测技术导则》(HJ 25.2-2014)、《土壤环境监测技术规范》(HJ/T 166-2004)、《地下水环境监测技术规范》(HJ/T 164-2004)及《重点行业企业用地调查样品采集保存和流转技术规定(试行)》(环办土壤函[2017]1896 号,环境保护部办公厅 2017 年 12 月 7 日印发)等标准规范的要求执行。

采集的土壤和地下水样品瓶立即放入冷藏箱进行低温保存,当天采用冷藏车送回实验室分析。采集样品设有专门的样品保管人员进行监督管理,负责样品的转移、封装、运输、交接、记录等。在现场样品装入采样器皿后,立即转移至冷藏箱低温保存,保持箱体密封,由专人负责将各个采样点的样品运送至集中运输样品储存点,放入集中储存点的冷藏箱内4℃以下保存。待所有样品采集完成后,样品仍低温保存在冷藏箱中,内置蓝冰,以保证足够的冷量,由专人负责尽快将样品送至分析实验室进行分析测试。

样品采集、保存和流转工作程序见下图。

图5-6 样品采集、保存、流转工作程序图

2、样品运输质量控制

样品采集完成后, 由专用冷藏车送至实验室, 并及时冷藏。

样品运输过程中的质量控制内容包括:

- (1) 样品装运前,核对采样标签、样品数量、采样记录等信息,核对无误后方可装车;
 - (2) 样品置于<4℃冷藏箱保存,运输途中严防样品的损失、混淆和沾污;
- (3)认真填写样品流转单,写明采样人、采样日期、样品名称、样品状态、检测项目等信息:
 - (4) 样品运抵实验室后及时清理核对,无误后及时将样品送入冰箱保存。

3、样品流转质量控制

(1) 装运前核对

样品流转运输保证样品完好并低温保存,采用适当的减震隔离措施,严防样品瓶的破损、混淆或沾污,在保存时限内运送至分析实验室。

由现场采样工作组中样品管理员和质量监督员负责样品装运前的核对,对样品与采样记录单进行逐个核对,按照样品保存要求进行样品保存质量检查,检查无误后分类装箱。样品装运前,填写《环境样品交接单》,包括采样人、采样时间、样品性状、检测项目和样品数量等信息。水样运输前将容器的外(内)盖盖紧。样品装箱过程中采取一

定的分隔措施,以防破损,用泡沫材料填充样品瓶和样品箱之间空隙。

(2) 样品运输

样品流转运输保证样品安全和及时送达,本项目选用专用冷藏车将土壤和地下水样品运送至实验室,同时确保样品在保存时限内能尽快运送至检测实验室。

本项目保证了样品运输过程中低温和避光的条件,采用了适当的减震隔离措施,避 免样品在运输和流转过程中损失、污染、变质(变性)或混淆,防止盛样容器破损、混 淆或沾污。

(3) 样品接收

样品送达实验室后,由样品管理员进行接收。样品管理员立即检查样品箱是否有破损,按照《环境样品交接单》清点核实样品数量、样品瓶编号以及破损情况,对样品进行符合性检查,确认无误后在《环境样品交接单》上签字。本项目样品管理员为熟悉土壤和地下水样品保存、流转的技术要求的专业技术人员。符合性检查包括:样品包装、标识及外观是否完好;样品名称、样品数量是否与原始记录单一致;样品是否损坏或污染。若出现样品瓶缺少、破损或样品瓶标签无法辨识等重大问题,样品管理员在《环境样品交接单》中进行标注,并及时与现场项目负责人沟通。

实验室收到样品后,按照《环境样品交接单》要求,立即安排样品保存和检测。

本项目样品流转过程均符合质控要求,未出现品瓶缺少、破损或样品瓶标签无法辨识等重大问题。

4、样品保存质量控制

样品保存包括现场暂存和流转保存两个环节,主要包括以下内容:

- 1)根据不同检测项目要求,在采样前向样品瓶中添加一定量的保护剂,在样品瓶标签上标注样品编号、采样时间等信息。
 - 2) 样品现场暂存

采样现场配备样品保温箱,内置冰冻蓝冰。样品采集后立即存放至保温箱内。

3) 样品流转保存

样品保存在有冰冻蓝冰的保温箱内运送到实验室,样品的有效保存时间为从样品采集完成到分析测试结束。含挥发性有机物的土壤样品要加入10mL甲醇(色谱级或农残级)保护剂,保存在棕色的样品瓶内。含挥发性有机物的地下水样品要保存在棕色的样品瓶内。

本项目对于易分解或易挥发等不稳定组分的样品采取低温保存的运输方法,尽快送

到实验室分析测试。测试项目需要新鲜样品的土样,采集后用可密封的聚乙烯或玻璃容器在 4°C以下避光保存,样品充满容器。避免用含有待测组分或对测试有干扰的材料制成的容器盛装保存样品,测定有机污染物用的土壤样品选用玻璃容器保存。

样品管理员收到样品后,立即检查样品箱是否有破损,按照《环境样品交接单》清 点核实样品数量、样品瓶编号以及破损情况。暂未出现样品瓶缺少、破损或样品瓶标签 无法辨识等重大问题。

分析取用后的剩余样品,待测定全部完成数据报出后,也移交样品库保存。分析取 用后的剩余样品一般保留半年。

本项目样品库保持干燥、通风、无阳光直射、无污染;样品存放于冰箱中,保证样品在<4°C的温度环境中保存。样品管理员定期查验样品,防止霉变、鼠害及标签脱落。

本项目样品保存、运输和流转过程均符合《土壤环境监测技术规范》(HJ/T 166-2004)和《地下水环境监测技术规范》(HJ/T 164-2004)中的相关规定。

5.4.4 实验室检测分析质量控制措施

为保证样品分析测试结果的准确与稳定,实验室开展了空白试验、精密度试验、准确度试验三个方面的质量控制手段。

1、 空白测试

(1) 全程序空白和运输空白

按样品检测要求,本批次共设置1批运输空白、淋洗空白、现场空白样品,以进行运输过程的质量控制,结果统计见表 5-10。

序号	检测参数	单位	现场空白	淋洗空白	运输空白	技术要求	结果评价
1.	pН	无量纲	7.21	7.07	-	-	合格
2.	臭和味	-	无	无	-	无	合格
3.	色度	度	<5	<5	-	<5	合格
4.	挥发酚	mg/L	< 0.002	< 0.002	-	< 0.002	合格
5.	氰化物	mg/L	< 0.002	< 0.002	-	< 0.002	合格
6.	氨氮	mg/L	< 0.020	< 0.020	-	< 0.020	合格
7.	六价铬	mg/L	< 0.004	< 0.004	-	< 0.004	合格
8.	耗氧量	mg/L	< 0.05	< 0.05	-	< 0.05	合格
9.	石油类	mg/L	< 0.01	< 0.01	-	< 0.01	合格

表 5-9 运输空白、全程序空白、现场空白和淋洗空白结果评价

		岳 Pロ ガ	X 明	返仅场地环境的	初步順宜报音 I		ı
序号	检测参数	单位	现场空白	淋洗空白	运输空白	技术要求	结果评价
10.	铜	μg/L	<0.08	< 0.08	-	< 0.08	合格
11.	铬	μg/L	< 0.11	< 0.11	-	< 0.11	合格
12.	镍	μg/L	< 0.06	< 0.06	-	< 0.06	合格
13.	锌	μg/L	< 0.67	< 0.67	-	< 0.67	合格
14.	铅	μg/L	< 0.09	< 0.09	-	< 0.09	合格
15.	镉	μg/L	< 0.05	< 0.05	-	< 0.05	合格
16.	砷	μg/L	< 0.12	< 0.12	-	< 0.12	合格
17.	汞	μg/L	< 0.04	< 0.04	-	< 0.04	合格
18.	苯	μg/L	<1.4	<1.4	<1.4	<1.4	合格
19.	甲苯	μg/L	<1.4	<1.4	<1.4	<1.4	合格
20.	乙苯	μg/L	< 0.8	< 0.8	< 0.8	< 0.8	合格
21.	间&对-二甲苯	μg/L	<2.2	<2.2	<2.2	<2.2	合格
22.	苯乙烯	μg/L	< 0.6	< 0.6	< 0.6	< 0.6	合格
23.	邻二甲苯	μg/L	<1.4	<1.4	<1.4	<1.4	合格
24.	1,2-二氯丙烷	μg/L	<1.2	<1.2	<1.2	<1.2	合格
25.	氯甲烷	μg/L	<5	<5	<5	<5	合格
26.	氯乙烯	μg/L	<1.5	<1.5	<1.5	<1.5	合格
27.	1,1-二氯乙烯	μg/L	<1.2	<1.2	<1.2	<1.2	合格
28.	二氯甲烷	μg/L	<1.0	<1.0	<1.0	<1.0	合格
29.	反-1,2-二氯乙烯	μg/L	<1.1	<1.1	<1.1	<1.1	合格
30.	1,1-二氯乙烷	μg/L	<1.2	<1.2	<1.2	<1.2	合格
31.	顺-1,2-二氯乙烯	μg/L	<1.2	<1.2	<1.2	<1.2	合格
32.	1,1,1-三氯乙烷	μg/L	<1.4	<1.4	<1.4	<1.4	合格
33.	四氯化碳	μg/L	<1.5	<1.5	<1.5	<1.5	合格
34.	1,2-二氯乙烷	μg/L	<1.4	<1.4	<1.4	<1.4	合格
35.	三氯乙烯	μg/L	<1.2	<1.2	<1.2	<1.2	合格
36.	1,1,2-三氯乙烷	μg/L	<1.5	<1.5	<1.5	<1.5	合格
37.	四氯乙烯	μg/L	<1.2	<1.2	<1.2	<1.2	合格
38.	1,1,1,2-四氯乙 烷	μg/L	<1.5	<1.5	<1.5	<1.5	合格
39.	1,1,2,2-四氯乙 烷	μg/L	<1.1	<1.1	<1.1	<1.1	合格
40.	1,2,3-三氯丙烷	μg/L	<1.2	<1.2	<1.2	<1.2	合格
41.	氯苯	μg/L	<1.0	<1.0	<1.0	<1.0	合格
42.	1,4-二氯苯	μg/L	< 0.5	<0.5	< 0.5	< 0.5	合格
43.	1,2-二氯苯	μg/L	< 0.5	< 0.5	<0.5	< 0.5	合格

富阳永明热镀锌有限公司退役场地环境初步调查报告

序号	检测参数	单位	现场空白	淋洗空白	运输空白	技术要求	结果评价
44.	氯仿	μg/L	<1.4	<1.4	<1.4	<1.4	合格
45.	2-氯酚	μg/L	<0.5	< 0.5	-	< 0.5	合格
46.	硝基苯	μg/L	<0.5	< 0.5	-	< 0.5	合格
47.	苯胺	μg/L	<2.5	<2.5	-	<2.5	合格
48.	萘	μg/L	< 0.011	< 0.011	-	< 0.011	合格
49.	苯并(a)蒽	μg/L	< 0.007	< 0.007	-	< 0.007	合格
50.	崫	μg/L	< 0.008	< 0.008	-	< 0.008	合格
51.	苯并(b)荧蒽	μg/L	< 0.003	< 0.003	-	< 0.003	合格
52.	苯并(k)荧蒽	μg/L	< 0.004	< 0.004	-	< 0.004	合格
53.	苯并(a)芘	μg/L	< 0.004	< 0.004	-	< 0.004	合格
54.	茚并(1,2,3-c,d) 芘	μg/L	<0.003	< 0.003	-	<0.003	合格
55.	二苯并(a,h)蒽	μg/L	< 0.003	< 0.003	-	< 0.003	合格

(2) 样品空白

每批次样品分析时均进行空白试验。分析测试方法有规定的,按分析测试方法的规定进行;分析测试方法无规定时,每批样品或每批样品分析均按 5%比例检测实验室空白。第一批送检样品分析测试了 3 批 102 项参数空白试验,第二批送检样品分析测试了 3 批 162 项空白试验,重金属污染物、有机污染物的空白样品检测结果均低于方法检出限,合格率均为 100%,保证检测过程没有受污染。

空白试验的详细结果见实朴检测出具的质控报告 6.1 章节。

(3) 空白试验总结

本调查项目空白试验总结如下。

表 5-10 空白试验总结

项目	批次	项目数量	合格率
运输空白	1	27	100%
淋洗空白	1	55	100%
现场空白	1	55	100%
样品空白	6	264	100%

在实验室内部,共做了1批27项运输空白、1批55项淋洗空白、1批55项现场空白试验,检测参数均小于方法检出限,保证运输过程没有受污染。

每批样品分析均按 5%比例检测实验室空白,2 批次的样品共分析测试了 6 批 264 项空白试验,重金属污染物、有机污染物的空白样品检测结果均低于方法检出限,合格

率均为100%,保证检测过程没有受污染。

2、精密度试验

本初步调查第一批送检实验室 51 个土壤样品,第二批送检土壤样品 40 个,水样 7 个。参照《重点行业企业用地调查质量保证与质量控制技术规定(试行)》的相关要求,每批次样品分析时,每个检测项目(除挥发性有机物外)均抽取了 5%的样品了平行双样分析,通过计算平行样的相对偏差,考察实验室精密度。

相对偏差按下式计算:

$$RD(\%) = \frac{|A - B|}{A + B} \times 100\%$$

若平行双样测定值(A,B)的相对偏差(RD)在允许范围内,则该平行双样的精密度控制为合格,否则为不合格。

实验室平行样和现场平行样结果统计见质控报告的6.2章节。

基质	平行样批次	平行样数量	合格率	现场平行样	现场平行样 数量	合格率
土壤	3	108	100%	4	196	100%
土壤	2	108	100%	6	306	97%
水样	1	26	100%	1	55	100%
合计	6	134	100%	7	557	98%

表 5-11 精密度总结

实验室进行了共 6 批 242 项平行样品测试、11 批 557 项现场平行样试验,相对偏差要求依据《重点行业企业用地调查质量保证与质量控制技术规定(试行)》进行判定,上述结果表明,本项目精密度合格率为 98%,满足技术规定中样品分析测试精密度要求达到 95%的要求,精密度符合要求。

3准确度试验

(1) 有证标准物质

参照《重点行业企业用地调查质量保证与质量控制技术规定(试行)》的相关要求,具备与被测土壤或地下水样品基体相同或类似的有证标准物质时,在每批次样品分析时同步均匀插入有证标准物质样品进行分析测试。每批次同类型分析样品按样品数 5%的比例插入 1 组标准物质样品。有证标准物质的结果统计见质控报告 6.3 章第一小节。

(2) 样品加标回收率

依据技术规定, 当没有合适的土壤或地下水基体有证标准物质时, 采用样品加标回

收率试验对准确度进行控制。每批次同类型分析样品中,随机抽取了 5%的样品进行加标回收率试验。

回收率(R)计算公式为:

$$R$$
,% = $\frac{$ 加标后总量 - 加标前测量值 $}{$ 加标量

若样品加标回收率在规定的允许范围内,则该加标回收率试验样品的准确度控制为合格,否则为不合格。

本次项目样品加标回收率统计见质控报告 6.3 章第二小节。

(3) 空白加标回收测试

按检测方法要求,由实验员对收到的土壤和地下水样品进行空白加标回收分析。 空白加标回收率(R)计算公式为:

$$R$$
,% = $\frac{$ 加标后总量 - 加标前测量值 $}{$ 加标量

加标回收率测试合格率详细结果见质控报告 6.3 章节第三小节。

(4) 准确度试验结果汇总

项目样品准确度汇总见表 5-12。

表 5-12 准确度统计

ベンコニ (正明川久夕107)								
	检测类	样品加标数量		有证标准物质		空白加标		
基质	别	批次	项目数 量	批次	项目数 量	批次	项目数 量	合格率
土壤(第	有机污 染物	2	10	0	0	2	74	100%
一批送检)	重金属 污染物	3	17	3	27	0	0	100%
土壤(第二批送	有机污 染物	2	78	0	0	2	82	100%
—批达 检)	重金属 污染物	0	0	2	19	0	0	100%
水质	有机和 重金属	1	36	1	14	1	54	100%
合计		8	141	6	60	5	210	100%

实验室进行了共 19 批 411 项准确度试验,准确度要求依据《重点行业企业用地调查质量保证与质量控制技术规定(试行)》进行判定,上述结果表明,本项目准确度合

格率为100%,满足技术规定中样品分析测试精密度要求达到100%的要求,准确度符合要求。

5、实验室质控总结

2019年5月10日采样送检土壤样品51个,检测参数共2499项,其中实验室内部进行了样品空白检测参数102项,空白样品加标检测参数76项,平行样分析108项,有证标准物质检测参数27项,样品加标检测参数27项,总计分析了340项内部质控,总内部质控比例14%,符合要求。

现场采集了4批平行土样,检测参数188项,现场质控比例为8%,符合要求。

质控方式	批次	项目数量	合格率	评价
样品空白	3	102	100%	合格
平行样	3	108	100%	合格
现场平行样	3	188	100%	合格
有证标准物质	3	27	100%	合格
空白样品加标	2	102	100%	合格
样品加标	2	27	100%	合格
合计	72	528	100%	合格

表 5-13 第一批送检样品质控总结

2019 年 9 月 21 日-25 日采集送检了土壤样品 40 个,水样 7 个,检测参数共 2265 项,其中实验室内部进行了样品空白检测参数 162 项,空白样品加标检测参数 136 项,平行样分析 134 项,有证标准物质检测参数 33 项,样品加标检测参数 114 项,总计分析了 579 项内部质控,总内部质控比例 24%,符合要求。

现场采集了1批运输空白样、现场空白、淋洗空白,检测参数137项,其测试结果小于检出限,判定合格;现场采集了6批平行土样,1批平行水样,检测参数361项,现场质控比例为15%,符合要求。

WOI WORLD HINDE					
质控方式	批次	项目数量	合格率	评价	
运输空白	1	27	100%	合格	
淋洗空白	1	55	100%	合格	
现场空白	1	55	100%	合格	
样品空白	3	162	100%	合格	
现场平行样	7	361	98%	合格	
平行样	3	134	100%	合格	
有证标准物质	3	33	100%	合格	
空白样品加标	3	136	100%	合格	

表 5-14 第二批送检样品质控总结

富阳永明热镀锌有限公司退役场地环境初步调查报告

样品加标	3	114	100%	合格
合计	25	1077	100%	合格

综上所述,在样品采集、运输与保存、样品制备、实验室分析、数据审核等各个环节上,江苏实朴和上海实朴均参照《重点行业企业用地调查调查样品采集保存和流转技术规定》(试行)、《重点行业企业用地调查质量保证与质量控制技术规定(试行)》和其他相关标准规定进行的全流程质量控制,严格执行全过程的质量保证和质量控制工作,出具结果准确可靠,质量控制符合要求。

六、监测结果分析与评价

6.1 评价标准

1、土壤评价标准

本次调查参照二类用地标准,土壤污染风险筛选值执行《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018),对于国标里没有筛选值的污染物,执行《浙江省污染场地风险评估技术导则》(DB33/T 892-2013)中商服及工业用地筛选值,建设用地土壤污染风险筛选值指在特定土地利用方式下,建设用地土壤中污染物含量等于或者低于该值的,对人体健康的风险可以忽略;超过该值的,对人体健康可能存在风险,应当开展进一步的详细调查和风险评估,确定具体污染范围和风险水平。

	表 6-1	土壤风险筛选值	(单位:	mg/kg)
--	-------	---------	------	--------

	7,01	工機外陸师起阻(中区	• • • • • • • • • • • • • • • • • • • •
序号	污染物项目	CAS 编号	筛选值 (第二类用地)
	重金属和无机物		
1	砷	7440-38-2	60
2	镉	7440-43-9	65
3	铬 (六价)	18540-29-9	5.7
4	铜	7440-50-8	18000
5	铅	7439-92-1	800
6	汞	7439-97-6	38
7	镍	7440-02-0	900
8	总铬*	7440-47-3	2500
9	锌*	7440-66-6	10000
10	氰化物	57-12-5	135
	挥发性有机物		
11	四氯化碳	56-23-5	2.8
12	氯仿	67-66-3	0.9
13	氯甲烷	74-87-3	37
14	1,1-二氯乙烷	75-34-3	9
15	1,2-二氯乙烷	107-06-2	5
16	1,1-二氯乙烯	75-35-4	66
17	顺 1,2-二氯乙烯	156-59-2	596
18	反 1,2-二氯乙烯	156-60-5	54
19	二氯甲烷	75-09-2	616
20	1,2-二氯丙烷	78-87-5	5
21	1,1,1,2-四氯乙烷	630-20-6	10
22	1,1,2,2-四氯乙烷	79-34-5	6.8

富阳永明热镀锌有限公司退役场地环境初步调查报告

序号	污染物项目	CAS 编号	筛选值 (# .)
			(第二类用地)
23	四氯乙烯	127-18-4	34
24	1,1,1-三氯乙烷	71-55-6	840
25	1,1,2-三氯乙烷	79-00-5	2.8
26	三氯乙烯	79-01-6	2.8
27	1,2,3-三氯丙烷	96-18-4	0.5
28	氯乙烯	75-01-4	0.43
29	苯	71-43-2	4
30	氯苯	108-90-7	270
31	1,2-二氯苯	95-50-1	560
32	1,4-二氯苯	106-46-7	20
33	乙苯	100-41-4	28
34	苯乙烯	100-42-5	1290
35	甲苯	108-88-3	1200
36	间二甲苯+对二甲苯	108-38-3,	570
30		106-42-3	570
37	邻二甲苯	95-47-6	640
	半挥发性有机物		
38	硝基苯	98-95-3	76
39	苯胺	62-53-3	260
40	2-氯酚	95-57-8	2256
41	苯并[a]蒽	56-55-3	15
42	苯并[a]芘	50-32-8	1.5
43	苯并[b]荧蒽	205-99-2	15
44	苯并[k]荧蒽	207-08-9	151
45	薜	218-01-9	1293
46	二苯并[a,h]蒽	53-70-3	1.5
47	茚并[1,2,3-cd]芘	193-39-5	15
48	萘	91-20-3	70
49	苯酚*	108-95-2	90
	石油烃类		
50	石油烃(C10-40)	-	4500

^{*}为《浙江省污染场地风险评估技术导则》(DB33/T 892-2013)中商服及工业用地筛选值。

2、地下水评价标准

地下水质量标准执行《地下水质量标准》(GB/T 14848-2017)中的 III 类标准,对于 GB/T 14848-2017 中无标准的污染物,参照美国 EPA 土壤和地下水标准、荷兰地下水标准及背景值的浓度进行分析,详见表 2-2。

表 2-2 地下水筛选值

序号	污染物项目	III 类指标限值	备注
7,3 3	重金属	200) (16 NAKE)	щт
1	砷 (mg/L)	0.01	
2	镉(mg/L)	0.005	
3	铬(六价) (mg/L)	0.05	
4	铜(mg/L)	1.0	
5	铅(mg/L)	0.01	
6	汞(mg/L)	0.001	
7	镍(mg/L)	0.02	
8	锌(mg/L)	1.0	
	挥发性有机物		
9	四氯化碳(μg/L)	2.0	
10	氯仿(μg/L)	60	
11	氯甲烷(μg/L)	190	美国 EPA 饮用水标准
12	1,1-二氯乙烷(μg/L)	2.4	
13	1,2-二氯乙烷 (μg/L)	30	
14	1,1-二氯乙烯 (μg/L)	30	
15	顺 1,2-二氯乙烯(μg/L)	50	
16	反 1,2-二氯乙烯(μg/L)	50	
17	二氯甲烷(μg/L)	20	
18	1,2-二氯丙烷(μg/L)	5.0	
19	1,1,1,2-四氯乙烷(μg/L)	/	
20	1,1,2,2-四氯乙烷(μg/L)	/	
21	四氯乙烯(μg/L)	40	
22	1,1,1-三氯乙烷(μg/L)	2000	
23	1,1,2-三氯乙烷(μg/L)	5.0	
24	三氯乙烯(μg/L)	70	
25	1,2,3-三氯丙烷(μg/L)	/	
26	氯乙烯(μg/L)	5.0	
27	苯(μg/L)	10	
28	氯苯(μg/L)	300	
29	1,2-二氯苯(μg/L)	1000	
30	1,4-二氯苯(μg/L)	300	
31	乙苯 (μg/L)	300	
32	苯乙烯(μg/L)	20	
33	甲苯 (μg/L)	700	
34	间二甲苯+对二甲苯(μg/L)	500	参照二甲苯(总量)的标
35	邻二甲苯(μg/L)	300	准
	半挥发性有机物		
36	硝基苯(mg/L)	/	
37	苯胺 (mg/L)	0.1	地表水环境质量标准中三 类标准

富阳永明热镀锌有限公司退役场地环境初步调查报告

序号	污染物项目	III 类指标限值	备注
38	2-氯酚(μg/L)	180	美国 EPA 饮用水标准
39	苯并[a]蔥(μg/L)	/	
40	苯并[a]芘(μg/L)	0.01	
41	苯并[b]荧蒽(μg/L)	4.0	
42	苯并[k]荧蒽(μg/L)	/	
43	崫(μg/L)	2.9	美国 EPA 饮用水标准
44	二苯并[a,h]蒽(μg/L)	/	
45	茚并[1,2,3-cd]芘(μg/L)	/	
46	萘(μg/L)	100	
	其他项		
47	pН	6.5-8.5	
48	嗅和味	无	
49	氰化物(mg/L)	0.05	
50	石油类	0.6	荷兰地下水标准
51	挥发性酚类(以苯酚计)	0.002	

6.2 检测结果

6.2.1 土壤检测结果

本次调查土壤点位共布设 20 个点位,包括场地内 19 个点位及场地外 1 个对照点,检测 87 个土壤样品(不包含质控样品),检测项目为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中基本项 45 项及 pH、锌、总铬、氰化物、苯酚、石油烃(C10-C40),样品检测结果汇总统计如下:

表 6-4 土壤样品检测结果汇总分析 (单位: mg/kg)

检测项目	送检数	检出数	场地内检测 结果范围	最大值 样品编号	对照点 结果	评价标 准	超标个数
pH 值	87	87	2.41~10.79	S7-0.5m: 10.79 S5-3.0m: 2.41	7.41-7.90	/	/
金属和无机物							
氰化物	40	0	<lor< td=""><td></td><td>/</td><td>135</td><td>0</td></lor<>		/	135	0
六价铬	87	0	<lor< td=""><td>-</td><td><lor< td=""><td>5.7</td><td>0</td></lor<></td></lor<>	-	<lor< td=""><td>5.7</td><td>0</td></lor<>	5.7	0
铜(Cu)	87	87	7~51	S6-0.5m	18~24	18000	0
铬 (Cr)	87	87	19~202	S1-0.5m	39-59	2500*	0
镍(Ni)	87	87	8~82	SJ2-5.0-6.0m	13~32	900	0
锌 (Zn)	87	87	48~7370	S6-1.5m	42.2~151	10000*	0
铅(Pb)	87	87	9.0~121	SJ3-0-0.5m	6.2~18.2	800	0
镉(Cd)	87	87	0.01~0.66	S3-3.0m S11-0.5m	0.05~0.21	65	0
砷(As)	87	87	1.68~40.6	S1-3.0m	2.46~7.22	60	0

富阳永明热镀锌有限公司退役场地环境初步调查报告

检测项目	送检数	检出数	场地内检测 结果范围	最大值 样品编号	对照点 结果	评价标 准	超标个数
汞(Hg)	87	87	0.005~0.537	S9-0.5m	0.025~0.195	38	0
挥发性有机	几物(VOC	(s)					
1,2-二氯乙烷	87	2	LOR ~0.0856	S6-0.5m	<lor< td=""><td>5</td><td>0</td></lor<>	5	0
其他 VOCs	87	0	<lor< td=""><td>-</td><td><lor< td=""><td>1</td><td>0</td></lor<></td></lor<>	-	<lor< td=""><td>1</td><td>0</td></lor<>	1	0
半挥发性有	机物(SVC	Cs)					
苯酚	40	11	<lor~1.5< td=""><td>SJ4-5.0-6.0m</td><td>/</td><td>90*</td><td>0</td></lor~1.5<>	SJ4-5.0-6.0m	/	90*	0
苯并(a)蒽	87	2	<lor~1.3< td=""><td>SJ6-5.0-6.0m</td><td><lor< td=""><td>15</td><td>0</td></lor<></td></lor~1.3<>	SJ6-5.0-6.0m	<lor< td=""><td>15</td><td>0</td></lor<>	15	0
崫	87	2	<lor~1.1< td=""><td>SJ6-5.0-6.0m</td><td><lor< td=""><td>1293</td><td>0</td></lor<></td></lor~1.1<>	SJ6-5.0-6.0m	<lor< td=""><td>1293</td><td>0</td></lor<>	1293	0
苯并(b)荧蒽	87	2	<lor~0.8< td=""><td>SJ6-5.0-6.0m</td><td><lor< td=""><td>15</td><td>0</td></lor<></td></lor~0.8<>	SJ6-5.0-6.0m	<lor< td=""><td>15</td><td>0</td></lor<>	15	0
苯并(k)荧蒽	87	2	<lor~0.4< td=""><td>SJ6-5.0-6.0m</td><td><lor< td=""><td>151</td><td>0</td></lor<></td></lor~0.4<>	SJ6-5.0-6.0m	<lor< td=""><td>151</td><td>0</td></lor<>	151	0
苯并(a)芘	87	2	<lor~0.5< td=""><td>SJ6-5.0-6.0m</td><td><lor< td=""><td>1.5</td><td>0</td></lor<></td></lor~0.5<>	SJ6-5.0-6.0m	<lor< td=""><td>1.5</td><td>0</td></lor<>	1.5	0
茚并(1,2,3-cd) 芘	87	2	<lor~0.2< td=""><td>SJ6-4.0-5.0m SJ6-5.0-6.0m</td><td><lor< td=""><td>15</td><td>0</td></lor<></td></lor~0.2<>	SJ6-4.0-5.0m SJ6-5.0-6.0m	<lor< td=""><td>15</td><td>0</td></lor<>	15	0
二苯并(a,h)蒽	87	2	<lor~0.08< td=""><td>SJ6-5.0-6.0m</td><td><lor< td=""><td>1.5</td><td>0</td></lor<></td></lor~0.08<>	SJ6-5.0-6.0m	<lor< td=""><td>1.5</td><td>0</td></lor<>	1.5	0
其他 SVOCs	87	0	<lor< td=""><td>-</td><td><lor< td=""><td>-</td><td>0</td></lor<></td></lor<>	-	<lor< td=""><td>-</td><td>0</td></lor<>	-	0
石油类							
石油烃 (C10-C40)	40	40	7~543	SJ8-0-0.5m	-	4500	0

注1: LOR=实验室报告检出限; "-"=无适用标准或不适用;

评价标准 =《建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地风险筛选值,*为《浙江省污染场地风险评估技术导则》(DB33/T 892-2013)中商服及工业用地筛选值。

送检土壤样品的检测结果如下:

表 6-5-1 土壤样品检测结果

测试报告		样品』	原标识	S1-0.5M	S1-2.0M	S1-3.0M	S1-6.0M	S2-0.5M	S2-1.5M	S2-3.0M	S2-6.0M
报告编号:	SEP/NJ/E1905133	采样	日期	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10
名称:富阳永	以明热镀锌有限公司	样品接	收日期	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12
分析指标	方法	检出限	单位	土样	土样	土样	土样	土样	土样	土样	土样
无机											
干物质	НЈ 613-2011	-	%	95.9	75.9	74.4	69.9	91.7	77.9	71.3	72.0
pН	NY/T 1121.2-2006	-	无量纲	7.90	7.25	4.92	6.94	7.07	7.02	7.23	7.20
六价铬	Q/JSSEP 0003S-2018	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
金属											
铜	GB/T 17138-1997	1	mg/kg	30	17	32	31	16	14	22	36
铬	НЈ 491-2009	5	mg/kg	202	28	72	83	24	19	64	87
镍	GB/T 17139-1997	5	mg/kg	25	13	40	45	22	16	37	43
锌	GB/T 17138-1997	0.5	mg/kg	3170	417	729	109	1500	119	179	106
铅	GB/T 17141-1997	0.1	mg/kg	51.3	21.2	15.1	17.6	137	23.8	18.3	16.7
镉	GB/T 17141-1997	0.01	mg/kg	0.34	0.13	0.10	0.06	0.06	0.16	0.09	0.07
砷	GB/T 22105.2-2008	0.01	mg/kg	18.1	8.85	35.6	12.2	10.4	8.82	7.48	34.0
汞	GB/T 22105.1-2008	0.002	mg/kg	0.049	0.127	0.067	0.064	0.044	0.174	0.065	0.063
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

表 6-5-2 土壤样品检测结果

测试报告		京标识	S3-0.5M	S3-1.5M	S3-3.0M	S3-6.0M	S4-0.5M	S4-1.5M	S4-3.0M	S4-6.0M
SEP/NJ/E1905133	采样	日期	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10
明热镀锌有限公司	样品接	收日期	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12
方法	检出限	单位	土样	土样	土样	土样	土样	土样	土样	土样
НЈ 613-2011	-	%	97.3	80.6	85.1	67.9	78.4	79.3	74.6	68.7
NY/T 1121.2-2006	-	无量纲	6.91	6.16	7.37	6.60	6.59	6.00	7.10	7.10
Q/JSSEP 0003S-2018	0.5	mg/kg	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5
GB/T 17138-1997	1	mg/kg	16	11	22	43	20	21	15	41
НЈ 491-2009	5	mg/kg	36	27	51	91	37	31	36	95
GB/T 17139-1997	5	mg/kg	19	24	24	48	24	28	34	49
GB/T 17138-1997	0.5	mg/kg	860	1180	4250	122	167	72.2	62.7	112
GB/T 17141-1997	0.1	mg/kg	21.2	23.6	27.4	19.1	17.2	20.7	15.7	21.4
GB/T 17141-1997	0.01	mg/kg	0.08	0.62	0.66	0.06	0.15	0.11	0.12	0.10
GB/T 22105.2-2008	0.01	mg/kg	24.0	3.39	10.1	16.6	5.27	4.48	4.39	21.5
GB/T 22105.1-2008	0.002	mg/kg	0.024	0.138	0.049	0.076	0.156	0.215	0.050	0.078
НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	明热镀锌有限公司 方法 HJ 613-2011 NY/T 1121.2-2006 Q/JSSEP 0003S-2018 GB/T 17138-1997 HJ 491-2009 GB/T 17138-1997 GB/T 17138-1997 GB/T 17141-1997 GB/T 22105.2-2008 GB/T 22105.1-2008 HJ 605-2011	田内	明热镀锌有限公司 样品接收日期 方法 检出限 单位 HJ 613-2011 - % NY/T 1121.2-2006 - 无量纲 Q/JSSEP 0003S-2018 0.5 mg/kg GB/T 17138-1997 1 mg/kg HJ 491-2009 5 mg/kg GB/T 17138-1997 5 mg/kg GB/T 17141-1997 0.1 mg/kg GB/T 17141-1997 0.01 mg/kg GB/T 22105.2-2008 0.01 mg/kg GB/T 22105.1-2008 0.002 mg/kg HJ 605-2011 - -	EP/NJ/E1905133 采样日期 2019/05/10 2019/05/12 方法 检出限 単位 土样 上样 上样 上样 上様 上様 単位 上様 上様 単位 上様 日期 日期 日期 日期 日期 日期 日期 日	EP/NJ/E1905133 采样日期 2019/05/10 2019/05/10 2019/05/10 2019/05/12 方法 检出限 単位 土样 土样 土样 土样 土井 土井 日月 日月 日月 日月 日月 日月 日月 日	EP/NJ/E1905133 采样日期 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/12 2019/05/12 2019/05/12 方法 检出限 単位 土样 土样 土样 土样 土样 土井 土井 土井	EP/NJ/E1905133 采样日期 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 3019/05/10 3019/05/10 3019/05/10 3019/05/10 3019/05/10 3019/05/10 3019/05/10 3019/05/12 301	EP/NJ/E1905133 采样日期 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/12 20	EP/NI/E1905133 采样日期 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/10 2019/05/12 201	REPNJJE1905133 来样日期 2019/05/10 201

表 6-5-3 土壤样品检测结果

					· · · · · · · · · · · · · · · · · · ·						
	测试报告	样品原	原标识	S5-0.5M	S5-1.5M	S5-3.0M	S5-6.0M	S6-0.5M	S6-1.5M	S6-4.0M	S6-6.0M
报告编号	: SEP/NJ/E1905133	采样	日期	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10
名称:富阳	永明热镀锌有限公司	样品接	收日期	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12
分析指标	方法	检出 限	单位	土样	土样	土样	土样	土样	土样	土样	土样
无机											
干物质	НЈ 613-2011	-	%	87.0	75.9	79.4	75.7	92.8	96.8	78.5	75.1
pН	NY/T 1121.2-2006	-	无量 纲	7.24	3.75	2.41	3.28	8.26	8.67	3.88	3.45
六价铬	Q/JSSEP 0003S-2018	0.5	mg/kg	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
金属											
铜	GB/T 17138-1997	1	mg/kg	18	11	18	23	51	40	24	28
铬	НЈ 491-2009	5	mg/kg	20	27	57	59	81	77	51	53
镍	GB/T 17139-1997	5	mg/kg	13	8	32	44	46	53	45	41
锌	GB/T 17138-1997	0.5	mg/kg	550	109	1570	4430	6600	7370	2260	4880
铅	GB/T 17141-1997	0.1	mg/kg	55.6	9.4	12.7	16.3	28.9	28.0	14.2	17.6
镉	GB/T 17141-1997	0.01	mg/kg	0.08	0.05	0.01	0.08	0.45	0.26	0.12	0.09
砷	GB/T 22105.2-2008	0.01	mg/kg	27.8	5.78	6.19	5.63	12.7	12.1	6.86	9.03
汞	GB/T 22105.1-2008	0.002	mg/kg	0.029	0.005	0.022	0.038	0.073	0.234	0.041	0.049
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
1,2-二氯 乙烷	НЈ 605-2011	1.3	ug/kg	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>85.6</td><td>74.5</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>85.6</td><td>74.5</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>85.6</td><td>74.5</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>85.6</td><td>74.5</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	85.6	74.5	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

表 6-5-4 土壤样品检测结果

测试报告		样品原	原标识	S7-0.5M	S7-1.5M	S7-3.0M	S7-6.0M	S8-0.5M	S8-1.5M	S8-3.0M	S8-6.0M	S9-0.5M
报告编号:	SEP/NJ/E1905133	采样	日期	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10
名称:富阳;	永明热镀锌有限公司	样品接	收日期	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12
分析指标	方法	检出 限	单位	土样	土样	土样	土样	土样	土样	土样	土样	土样
无机												
干物质	НЈ 613-2011	-	%	97.2	94.7	72.7	71.5	86.8	86.3	69.1	66.3	71.0
pН	NY/T 1121.2-2006	-	无量 纲	10.79	7.10	5.95	6.91	9.39	8.01	7.13	7.43	6.54
六价铬	Q/JSSEP 0003S-2018	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
金属												
铜	GB/T 17138-1997	1	mg/kg	39	8	33	41	26	13	27	42	26
铬	НЈ 491-2009	5	mg/kg	29	20	64	82	54	87	87	83	48
镍	GB/T 17139-1997	5	mg/kg	30	12	56	55	41	34	50	61	24
锌	GB/T 17138-1997	0.5	mg/kg	599	340	496	96.5	337	4030	111	101	1890
铅	GB/T 17141-1997	0.1	mg/kg	20.4	104	15.6	13.9	15.0	29.1	17.3	15.1	23.4
镉	GB/T 17141-1997	0.01	mg/kg	0.27	0.02	0.09	0.08	0.43	0.37	0.11	0.09	0.22
砷	GB/T 22105.2-2008	0.01	mg/kg	11.0	15.0	4.49	20.7	14.7	9.01	12.1	20.1	8.23
汞	GB/T 22105.1-2008	0.002	mg/kg	0.028	0.071	0.066	0.079	0.069	0.138	0.069	0.072	0.537
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

表 6-5-5 土壤样品检测结果

	测试报告	样品原标识		S9-1.5M	S9-3.0M	S9-6.0M	S10-0.5M	S10-1.5M	S10-3.0M	S10-6.0M
报告编号	号: SEP/NJ/E1905133	采		2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10	2019/05/10
名称:富阝	日永明热镀锌有限公司	样品	接收日期	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12	2019/05/12
分析指标	方法	检出限	单位	土样	土样	土样	土样	土样	土样	土样
无机										
干物质	НЈ 613-2011	-	%	78.6	76.8	76.2	93.9	76.8	79.6	61.8
pН	NY/T 1121.2-2006	-	无量纲	7.41	7.19	7.59	8.03	7.20	7.52	7.39
六价铬	Q/JSSEP 0003S-2018	0.5	mg/kg	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
金属										
铜	GB/T 17138-1997	1	mg/kg	7	20	19	39	16	36	41
铬	НЈ 491-2009	5	mg/kg	45	61	55	61	30	87	81
镍	GB/T 17139-1997	5	mg/kg	31	40	45	34	24	59	61
锌	GB/T 17138-1997	0.5	mg/kg	48.0	83.3	63.3	370	97.5	101	99.0
铅	GB/T 17141-1997	0.1	mg/kg	12.6	12.8	8.2	22.2	18.5	13.6	14.0
镉	GB/T 17141-1997	0.01	mg/kg	0.02	0.02	0.08	0.22	0.36	0.06	0.10
砷	GB/T 22105.2-2008	0.01	mg/kg	3.91	8.79	2.75	9.12	8.91	4.66	20.7
汞	GB/T 22105.1-2008	0.002	mg/kg	0.047	0.060	0.052	0.062	0.141	0.050	0.067
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

表 6-5-6 土壤样品检测结果

	样品」	原标识	S11-0.5M	S11-1.5M	S11-3.0M	S11-6.0M	
报告编号: SEP/NJ/E1905133		采样	日期	2019/05/10	2019/05/10	2019/05/10	2019/05/10
名称	名称:富阳永明热镀锌有限公司		收日期	2019/05/12	2019/05/12	2019/05/12	2019/05/12
分析指标	方法	检出限	单位	土样	土样	土样	土样
无机							
干物质	НЈ 613-2011	-	%	91.3	79.2	77.6	72.5
pН	NY/T 1121.2-2006	-	无量纲	7.97	7.73	7.60	7.60
六价铬	Q/JSSEP 0003S-2018	0.5	mg/kg	< 0.5	<0.5	< 0.5	< 0.5
金属							
铜	GB/T 17138-1997	1	mg/kg	19	23	32	27
铬	НЈ 491-2009	5	mg/kg	43	56	79	66
镍	GB/T 17139-1997	5	mg/kg	23	21	40	35
锌	GB/T 17138-1997	0.5	mg/kg	134	61.0	108	77.9
铅	GB/T 17141-1997	0.1	mg/kg	23.5	9.1	14.6	10.4
镉	GB/T 17141-1997	0.01	mg/kg	0.66	0.08	0.10	0.07
砷	GB/T 22105.2-2008	0.01	mg/kg	29.9	5.35	40.6	7.94
汞	GB/T 22105.1-2008	0.002	mg/kg	0.047	0.036	0.052	0.053
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

注 1: LOR=实验室报告检出限

表 6-5-7 土壤样品检测结果

测试报告		样品』	原标识	SJ1-0-0.5m	SJ1-1.5-2.0m	SJ1-2.0-2.5m	SJ1-3.0-4.0m	SJ1-5.0-6.0m	SJ2-0-0.5m	SJ2-1.0-1.5m
报告编号: SEP/SI	H/E1909965	采样	日期	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/21	2019/09/21
项目名称:富阳永明 役场地环境调查报	用热镀锌有限公司退 告	样品接收日期		2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22
分析指标	方法	检出 限	单位	土样	土样	土样	土样	土样	土样	土样
无机										
干物质	НЈ 613-2011	-	%	84.4	87.9	83.8	83.0	72.5	81.8	83.5
рН	NY/T 1377-2007	-	无量纲	7.69	8.11	7.87	8.11	7.87	7.54	8.11
氰化物	НЈ 745-2015	0.04	mg/kg	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
六价铬	USEPA 3060A-1996 & USEPA 7196A-1992	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
金属										
铜	НЈ 491-2019	1	mg/kg	20	20	14	28	43	20	21
铬	НЈ 491-2019	4	mg/kg	55	65	58	77	80	75	71
镍	НЈ 491-2019	3	mg/kg	40	44	36	51	52	52	50
锌	НЈ 491-2019	1	mg/kg	81	74	52	88	118	67	67
铅	GB/T 17141-1997	0.1	mg/kg	26.1	16.4	11.6	19.3	21.3	14.6	13.7
镉	GB/T 17141-1997	0.01	mg/kg	0.16	0.05	0.02	0.05	0.10	0.04	0.04
砷	GB/T 22105.2-2008	0.01	mg/kg	7.43	9.14	2.55	2.39	17.1	2.80	4.16
汞	GB/T 22105.1-2008	0.002	mg/kg	0.087	0.026	0.022	0.033	0.041	0.024	0.024
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
石油烃(C10-C40)	НЈ 1021-2019	6	mg/kg	26	11	18	31	33	28	152

表 6-5-8 土壤样品检测结果

测试报告		样品	原标识	SJ2-2.0-2.5m	SJ2-3.0-4.0m	SJ2-5.0-6.0m	SJ3-0-0.5m	SJ3-1.0-1.5m	SJ3-2.0-2.5m	SJ3-3.0-4.0m
报告编号: SEP/SF	H/E1909965	采样	4日期	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21
项目名称:富阳永明热镀锌有限公司退 役场地环境调查报告		样品接收日期		2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22
分析指标	方法	检出 限	单位	土样	土样	土样	土样	土样	土样	土样
无机										
干物质	НЈ 613-2011	-	%	79.0	80.3	74.8	95.2	80.1	78.4	79.2
pН	NY/T 1377-2007	-	无量纲	7.93	7.71	7.41	8.15	8.22	8.15	8.10
氰化物	НЈ 745-2015	0.04	mg/kg	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
六价铬	USEPA 3060A-1996 & USEPA 7196A-1992	0.5	mg/kg	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
金属										
铜	НЈ 491-2019	1	mg/kg	38	38	48	44	13	16	31
铬	НЈ 491-2019	4	mg/kg	98	101	109	59	57	60	77
镍	НЈ 491-2019	3	mg/kg	75	71	82	62	38	37	46
锌	НЈ 491-2019	1	mg/kg	109	109	113	325	74	78	103
铅	GB/T 17141-1997	0.1	mg/kg	21.9	20.7	18.8	121	15.8	15.7	22.0
镉	GB/T 17141-1997	0.01	mg/kg	0.15	0.02	0.13	0.98	0.15	0.06	0.07
砷	GB/T 22105.2-2008	0.01	mg/kg	12.5	15.8	18.5	32.5	6.30	6.35	10.3
汞	GB/T 22105.1-2008	0.002	mg/kg	0.039	0.042	0.057	0.037	0.027	0.030	0.042
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
石油烃 (C10-C40)	НЈ 1021-2019	6	mg/kg	49	14	37	51	15	19	21

表 6-5-9 土壤样品检测结果

									1	
测试报告		样品	原标识	SJ3-5.0-6.0m	SJ4-0-0.5m	SJ4-1.0-1.5m	SJ4-2.0-2.5m	SJ4-3.0-4.0m	SJ4-5.0-6.0m	SJ5-0-0.5m
报告编号: SEP/SF	H/E1909965	65 采样日期		2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21
项目名称:富阳永明场地环境调查报告]热镀锌有限公司退役	样品接收日期		2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22
分析指标	方法	检出 限	单位	土样	土样	土样	土样	土样	土样	土样
无机										
干物质	НЈ 613-2011	-	%	78.0	89.8	78.9	79.9	75.9	72.9	82.2
pН	NY/T 1377-2007	-	无量纲	8.16	8.27	8.23	8.08	8.10	7.61	7.87
氰化物	НЈ 745-2015	0.04	mg/kg	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
六价铬	USEPA 3060A-1996 & USEPA 7196A-1992	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
金属										
铜	НЈ 491-2019	1	mg/kg	21	21	14	31	39	40	12
铬	НЈ 491-2019	4	mg/kg	61	38	53	84	87	93	53
镍	НЈ 491-2019	3	mg/kg	38	30	35	54	56	64	38
锌	НЈ 491-2019	1	mg/kg	79	348	57	111	106	112	52
铅	GB/T 17141-1997	0.1	mg/kg	15.9	103	12.8	24.0	20.0	19.4	11.9
镉	GB/T 17141-1997	0.01	mg/kg	0.04	0.46	0.03	0.07	0.16	0.11	0.04
砷	GB/T 22105.2-2008	0.01	mg/kg	3.47	13.8	4.82	7.41	4.62	16.0	1.68
汞	GB/T 22105.1-2008	0.002	mg/kg	0.031	0.130	0.026	0.042	0.044	0.057	0.024
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	HJ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
苯酚	HJ 834-2017	0.1	mg/kg	0.4	<0.1	0.4	< 0.1	< 0.1	1.5	<0.1
石油烃(C10-C40)	НЈ 1021-2019	6	mg/kg	20	37	30	14	18	26	7

表 6-5-10 土壤样品检测结果

		,								
测试报告		样品	原标识	SJ5-1.0-1.5m	SJ5-2.0-2.5m	SJ5-3.0-4.0m	SJ5-5.0-6.0m	SJ6-0-0.5m	SJ6-1.0-1.5m	SJ6-2.0-2.5m
报告编号: SEP/S	SH/E1909965	采棹	4日期	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21
项目名称:富阳永 役场地环境调查:	明热镀锌有限公司退 报告	样品接收日期		2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22
分析指标	方法	检出 限	单位	土样	土样	土样	土样	土样	土样	土样
无机										
干物质	НЈ 613-2011	-	%	82.7	79.3	82.7	77.5	84.2	82.1	79.9
pН	NY/T 1377-2007	-	无量纲	8.16	8.01	8.10	8.22	7.95	8.08	8.07
氰化物	НЈ 745-2015	0.04	mg/kg	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
六价铬	USEPA 3060A-1996 & USEPA 7196A-1992	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
金属										
铜	HJ 491-2019	1	mg/kg	15	33	28	34	13	14	29
铬	HJ 491-2019	4	mg/kg	64	81	75	87	52	52	77
镍	НЈ 491-2019	3	mg/kg	44	56	50	55	28	30	44
锌	НЈ 491-2019	1	mg/kg	69	99	95	95	55	60	92
铅	GB/T 17141-1997	0.1	mg/kg	15.0	20.9	18.6	18.0	12.6	13.3	18.5
镉	GB/T 17141-1997	0.01	mg/kg	0.05	0.11	0.02	0.11	0.05	0.06	0.06
砷	GB/T 22105.2-2008	0.01	mg/kg	2.79	9.49	6.79	6.89	2.12	2.30	4.63
汞	GB/T 22105.1-2008	0.002	mg/kg	0.028	0.041	0.036	0.044	0.020	0.019	0.037
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
石油烃 (C10-C40)	НЈ 1021-2019	6	mg/kg	8	16	27	48	66	31	22

表 6-5-11 土壤样品检测结果

测试报告		样品原	原标识	SJ6-3.0-4.0m	SJ6-5.0-6.0m	SJ7-0-0.5m	SJ7-1.0-1.5m	SJ7-2.0-2.5m	SJ7-3.0-4.0m	SJ7-5.0-6.0m
报告编号: SI	EP/SH/E1909965	采样	日期	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21
项目名称:富阳 司退役场地环	日永明热镀锌有限公 境调查报告	样品接	收日期	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22
分析指标	方法	检出限	单位	土样	土样	土样	土样	土样	土样	土样
无机										
干物质	НЈ 613-2011	-	%	85.1	74.3	85.3	83.4	81.4	81.4	77.5
pН	NY/T 1377-2007	-	无量纲	8.06	8.06	8.23	8.25	8.13	8.18	8.29
氰化物	НЈ 745-2015	0.04	mg/kg	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
六价铬	USEPA 3060A-1996 & USEPA 7196A-1992	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
金属										
铜	НЈ 491-2019	1	mg/kg	27	27	18	13	23	26	24
铬	НЈ 491-2019	4	mg/kg	72	66	47	57	65	69	68
镍	НЈ 491-2019	3	mg/kg	46	44	33	36	39	47	43
锌	НЈ 491-2019	1	mg/kg	95	85	116	65	74	91	76
铅	GB/T 17141-1997	0.1	mg/kg	19.3	16.0	46.0	14.0	15.0	19.0	15.3
镉	GB/T 17141-1997	0.01	mg/kg	0.03	0.07	0.21	0.04	0.04	0.07	0.07
砷	GB/T 22105.2-2008	0.01	mg/kg	6.23	13.2	7.08	2.35	4.86	6.82	15.6
汞	GB/T 22105.1-2008	0.002	mg/kg	0.034	0.037	0.096	0.021	0.030	0.034	0.028
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs										
苯酚	НЈ 834-2017	0.1	mg/kg	< 0.1	< 0.1	<0.1	0.4	0.5	<0.1	1.0
苯并(a)蒽	НЈ 834-2017	0.1	mg/kg	0.9	1.3	<0.1	<0.1	< 0.1	<0.1	< 0.1
崫	НЈ 834-2017	0.1	mg/kg	0.8	1.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

富阳永明热镀锌有限公司退役场地环境初步调查报告

测试报告		样品原	東标识	SJ6-3.0-4.0m	SJ6-5.0-6.0m	SJ7-0-0.5m	SJ7-1.0-1.5m	SJ7-2.0-2.5m	SJ7-3.0-4.0m	SJ7-5.0-6.0m
报告编号: SE	EP/SH/E1909965	采样	日期	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21	2019/09/21
	目名称:富阳永明热镀锌有限公		收日期	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22
分析指标	方法	检出限	单位	土样	土样	土样	土样	土样	土样	土样
苯并(b)荧蒽	НЈ 834-2017	0.2	mg/kg	0.6	0.8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
苯并(k)荧蒽	НЈ 834-2017	0.1	mg/kg	0.3	0.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
苯并(a)芘	НЈ 834-2017	0.1	mg/kg	0.4	0.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
茚并 (1,2,3-cd)芘	НЈ 834-2017	0.1	mg/kg	0.2	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
二苯并(a,h) 蒽	НЈ 834-2017	0.05	mg/kg	0.06	0.08	<0.05	<0.05	<0.05	<0.05	<0.05
其他 SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
石油烃 (C10-C40)	НЈ 1021-2019	6	mg/kg	105	51	48	21	20	44	25

注 1: LOR=实验室报告检出限

表 6-5-12 土壤样品检测结果

测试报告		样品	原标识	SJ8-0-0.5m	SJ8-1.0-1.5m	SJ8-2.0-2.5m	SJ8-2.5-3.0m	SJ8-5.0-6.0m
报告编号: SEP/SH/E19	09965	采柏	羊 日期	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22
项目名称:富阳永明热镀 调查报告	锌有限公司退役场地环境	样品接	長收日期	2019/09/22	2019/09/22	2019/09/22	2019/09/22	2019/09/22
分析指标	方法	检出限	单位	土样	土样	土样	土样	土样
无机								
干物质	НЈ 613-2011	-	%	83.9	85.3	86.9	73.0	82.2
pН	NY/T 1377-2007	-	无量纲	8.06	7.72	7.94	7.64	8.21
氰化物	НЈ 745-2015	0.04	mg/kg	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
六价铬	USEPA 3060A-1996 & USEPA 7196A-1992	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
金属								
铜	НЈ 491-2019	1	mg/kg	15	16	12	41	26
铬	НЈ 491-2019	4	mg/kg	38	37	43	83	60
镍	НЈ 491-2019	3	mg/kg	30	28	27	57	43
锌	НЈ 491-2019	1	mg/kg	88	87	52	122	91
铅	GB/T 17141-1997	0.1	mg/kg	24.1	24.5	11.8	19.2	18.2
镉	GB/T 17141-1997	0.01	mg/kg	0.15	0.13	0.02	0.10	0.08
砷	GB/T 22105.2-2008	0.01	mg/kg	7.60	4.88	2.41	11.9	2.47
汞	GB/T 22105.1-2008	0.002	mg/kg	0.114	0.080	0.019	0.050	0.035
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
石油烃(C10-C40)	НЈ 1021-2019	6	mg/kg	543	15	22	25	20

富阳永明热镀锌有限公司退役场地环境初步调查报告

表 6-5-13 土壤对照点样品检测结果

测试报告		样品	原标识	DZ1-0.5M	DZ1-1.5M	DZ1-6.0M
报告编号:	SEP/NJ/E1905133	采样	日期	2019/05/10	2019/05/10	2019/05/10
名称:富阳永	明热镀锌有限公司	样品接	長收日期	2019/05/12	2019/05/12	2019/05/12
分析指标	方法	检出限	单位	土样	土样	土样
无机						
干物质	НЈ 613-2011	-	%	78.4	75.0	74.2
pН	NY/T 1121.2-2006	-	无量纲	7.90	7.41	7.62
六价铬	Q/JSSEP 0003S-2018	0.5	mg/kg	<0.5	<0.5	<0.5
金属	00035 2010					
铜	GB/T 17138-1997	1	mg/kg	18	24	19
铬	НЈ 491-2009	5	mg/kg	43	39	59
镍	GB/T 17139-1997	5	mg/kg	14	13	32
锌	GB/T 17138-1997	0.5	mg/kg	42.2	151	62.2
铅	GB/T 17141-1997	0.1	mg/kg	6.2	18.2	9.0
镉	GB/T 17141-1997	0.01	mg/kg	0.05	0.21	0.06
砷	GB/T 22105.2-2008	0.01	mg/kg	2.46	7.22	4.63
汞	GB/T 22105.1-2008	0.002	mg/kg	0.025	0.195	0.052
VOCs	НЈ 605-2011			<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
SVOCs	НЈ 834-2017			<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

注 1: LOR=实验室报告检出限

6.2.2 地下水检测结果

本次调查共采集5个地下水样品(不含质控样品),其中场地内4个样品,场地外对照点1个样品。地下水样品检测结果如下:

表 6-6 地下水检测结果

ì	测试报告	样品原	原标识		Ј1	J2	Ј3	J3DNAPL	DZ
报告编号:	SEP/SH/E1909965	采样	日期	筛选值	2019/09/25	2019/09/25	2019/09/25	2019/09/25	2019/09/25
项目名称:富阳永明	月热镀锌有限公司退役场地	样品接收日期			2019/09/26	2019/09/26	2019/09/26	2019/09/26	2019/09/26
分析指标	方法	检出限	单位		地下水	地下水	地下水	地下水	地下水
无机									
pН	GB/T 5750.4-2006(5.1)	-	无量纲	6.5~8.5	7.25	7.01	7.04	7.00	7.13
臭和味	GB/T5750.4-2006(3.1)	-	-	无	微弱	微弱	微弱	微弱	微弱
挥发酚 (以苯酚计)	GB/T 5750.4-2006(9.1)	0.002	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	< 0.002
氰化物	GB/T 5750.5-2006 (4.1)	0.002	mg/L	0.05	< 0.002	<0.002	< 0.002	<0.002	< 0.002
六价铬	GB/T 5750.6-2006(10.1)	0.004	mg/L	0.05	< 0.004	<0.004	<0.004	<0.004	< 0.004
石油类	НЈ 970-2018	0.01	mg/L	0.6	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
金属									
铜	НЈ 700-2014	0.08	μg/L	1000	2.42	0.14	0.22	0.09	2.35
镍	НЈ 700-2014	0.06	μg/L	20	1.95	0.71	1.33	0.53	2.15
锌	НЈ 700-2014	0.67	μg/L	1000	639	4.87	8.05	7.72	9.61
铅	НЈ 700-2014	0.09	μg/L	10	0.14	< 0.09	< 0.09	< 0.09	< 0.09
镉	НЈ 700-2014	0.05	μg/L	5	0.05	< 0.05	< 0.05	< 0.05	< 0.05
砷	НЈ 700-2014	0.12	μg/L	10	1.75	3.07	8.18	5.52	0.70
汞	НЈ 694-2014	0.04	μg/L	1	0.04	< 0.04	< 0.04	< 0.04	< 0.04

富阳永明热镀锌有限公司退役场地环境初步调查报告

3	测试报告		样品原标识		J1	J2	Ј3	J3DNAPL	DZ
报告编号:	报告编号: SEP/SH/E1909965		采样日期		2019/09/25	2019/09/25	2019/09/25	2019/09/25	2019/09/25
项目名称:富阳永明	月热镀锌有限公司退役场地	样品接收日期			2019/09/26	2019/09/26	2019/09/26	2019/09/26	2019/09/26
分析指标	方法	检出限	单位		地下水	地下水	地下水	地下水	地下水
VOCs	НЈ 639-2012				<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
GVOC-	USEPA 8270E-2018				4 OD	4 OD	4 OD	4 OD	4 OD
SVOCs	НЈ 478-2009				<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

6.3 结果分析和评价

6.3.1 土壤检测结果与评价

本次调查在场地内及对照点共检测了87个土壤样品(不含质控样品),土壤样品检测项目包括:《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中基本项45项及pH、含水率、锌、总铬、氰化物、苯酚、石油烃(C10-C40)。

1、土壤酸碱性评价

由于企业生产中使用到盐酸、氢氧化钠、铬酸,本次调查所有土壤样品均测定了土壤 pH 值。土壤酸碱度检出结果如下:

场地内土壤样品的 pH 值在 2.41-10.79 之间, 其中 pH 值低于 5.5 的样品有 S1-3.0m (pH 值 4.92)、S5-1.5m (pH 值 3.75)、S5-3.0m (pH 值 2.41)、S5-6.0m (pH 值 3.28)、S6-4.0m (pH 值 3.88)、S6-6.0m (pH 值 3.45),呈强酸性, S1 位于原应急池区域,呈强酸性的土壤深度为 2.0-3.0m, S5 位于原 2 号表面处理线区域,取样点位于酸洗槽附近,呈强酸性的土壤深度为 1.0-6.0m,S6 位于原 2 号锌锅区域,呈强酸性的土壤深度为 3.0-6.0m;pH 值大于 8.5 的样品有 S7-0.5m (pH 值 10.79)、S8-0.5m (pH 值 9.39),呈强碱性,S7 位于原 1 号表面处理线区域,取样点临近碱洗槽,S8 位于原塔料仓库,2个点位呈强碱性的土壤深度均为 0-0.5m。

综上,土壤呈强酸性的区域为 S1 原应急池区域、S5 原 2 号表面处理线-酸洗槽附近、S6 位于原 2 号锌锅区域,S1 处历史上发生过表面处理废水渗漏外排现象,可能由于含酸废水污染所致; S5、S6 位于 2 号生产线,强酸性的土壤深度分布在 1.0-6.0m,可能由于酸洗槽泄露导致的酸污染。土壤呈强碱性的区域为 S7 原 1 号表面处理线区域、S8 原塔料仓库,强碱性的土壤深度在 0-0.5m,为表层土壤,原生产线表面处理工艺为碱洗-酸洗-钝化-助镀,可能是由于碱洗工序管理不当造成的。

由于土壤中的 pH 值没有筛选值,土壤酸碱度对地块后续开发利用的影响在于施工期间对钢筋混凝土的腐蚀性,建议后期地块开发利用时关注地块内土壤腐蚀性,施工时选择合理的耐腐蚀性建筑材料。

2、关注污染物检出情况评价

本场地土壤关注污染物为重金属锌、总铬、六价铬、苯酚、氰化物、石油烃(C10-C40)及苯并芘[a],其中六价铬、氰化物、苯并芘[a]在所有送检样品中均未被检出,苯酚在

11个土壤样品中被检出,检出浓度范围为 0.4~1.5mg/kg,低于《浙江省污染场地风险评估技术导则》(DB33/T 892-2013)中第二类用地筛选值(90mg/kg)。锌、总铬、石油烃(C10-C40)在所有样品中都被检出,土壤样品中锌的检出浓度范围为 48~7370mg/kg,最高浓度点为 S6-1.5m,土壤深度为 1.0-1.5m,历史上为 2 号锌锅区域;总铬的检出浓度范围为 19~202mg/kg,最高浓度点为 S1-0.5m,土壤深度为 0-0.5m,历史上为应急池区域;石油烃(C10-C40)的检出浓度范围为 7-543mg/kg,最高浓度点为 SJ8-0-0.5m,土壤深度为 0-0.5m,历史上为煤气发生炉区域;土壤中锌、总铬、总石油烃的检出浓度均未超过土壤污染风险筛选值。

3、土壤污染物检出结果评价

根据江苏实朴检测有限公司出具的检测报告(报告编号: SEP/NJ/E1905133)和上海实朴检测技术服务有限公司出具的检测报告(报告编号: SEP/SH/E1909965),本次调查送检的土壤样品中各项指标的检出浓度均低于土壤污染风险筛选值。

6.3.2 地下水检测结果与评价

本此调查在场地内及对照点共布设 4 个地下水井,采集了 5 个地下水样品(场地内 J3 采集 DNAPL 样品),地下水样品检测项目与土壤一致。

1、地下水埋深及流向

场地内及对照点地下水位的测量结果如下:

编号 地面高程(m) 地下水位埋深(m) 地下水位高程 (m) J1 16.0138 1.0 15.0138 J2 16.352 0.9 15.452 15.9855 J3 1.5 14.4855

表5-2 水位和标高测量记录

地面高程由现场RTK测量,根据现场水位测量记录得出场地内地下水位埋深在地面以下0.9m至1.5m之间,地下水位标高在14.4855至15.452m之间,用内插法画出地下水位等值线,可以看出场地内地下水流向整体为东北向西南。地下水流场图见图6-1。

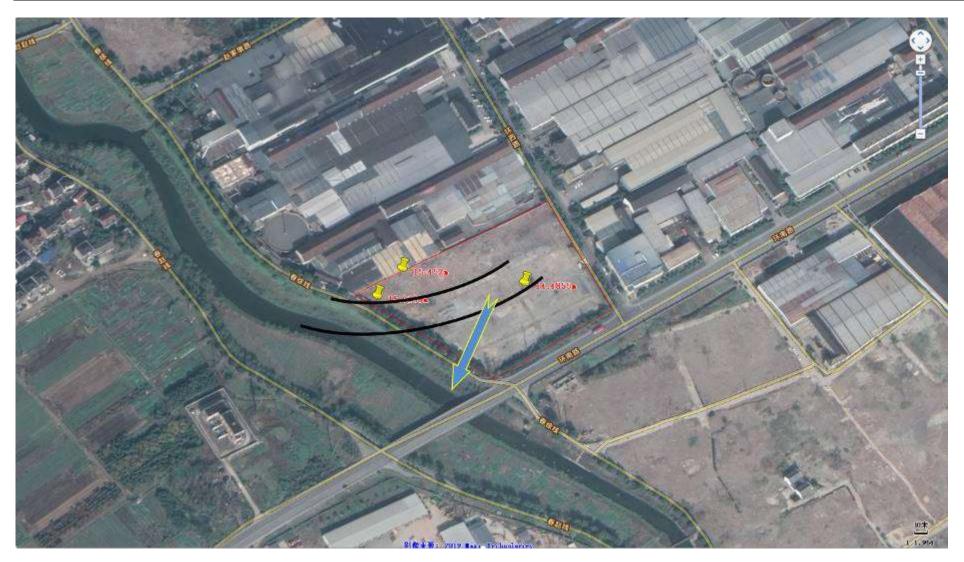


图6-1 地下水流场图

2、地下水检测结果分析

根据检测结果,场地地下水样品各项指标均低于《地下水质量标准》(GB14848-2017) 中III类水质指标限值,满足地下水III类水质标准。

七、结论和建议

7.1 结论

富阳永明热镀锌有限公司退役场地位于杭州市富阳区灵桥镇环镇西路 1 号,占地面积 19000 平方米,地块前身为工业地块,后期拟规划为商业工业混合用地(M/B)。按照《建设用地土壤环境调查评估技术指南》(环境保护部 2017 年 12 月)、《场地环境调查技术导则》(HJ 25.1-2014)、《场地环境监测技术导则》(HJ 25.2-2014)等文件及技术导则的要求,于 2019 年 4 月-11 月期间,通过现场踏勘、人员访谈及资料分析,在富阳永明热镀锌有限公司退役场地开展了土壤和地下水初步调查,工作内容包括初步采样布点方案制定、现场采样、样品检测、数据分析与评估、初步调查报告编制等。

本次初步调查得出如下结论:

1、本次初步调查在场地内及对照点布设了20个土壤点位,共检测了87个土壤样品(不含质控样品),土壤样品检测项目包括:《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中基本项45项及特征污染物pH、锌、总铬、氰化物、苯酚、石油烃(C10-C40)。根据江苏实朴检测有限公司出具的检测报告(报告编号:SEP/NJ/E1905133)和上海实朴检测技术服务有限公司出具的检测报告(报告编号:SEP/SH/E1909965),检测结果如下:

(1) 土壤酸碱度情况

pH值在所有样品中均被检出,场地内土壤样品的pH值在2.41-10.79之间,其中pH值低于5.5的点位是S1、S5、S6,S1位于原应急池区域,呈强酸性的土壤深度为2.0-3.0m,S5位于原2号表面处理线区域,取样点位于酸洗槽附近,呈强酸性的土壤深度为1.0-6.0m,S6位于原2号锌锅区域,呈强酸性的土壤深度为3.0-6.0m;pH值大于8.5的点位有S7-0.5m(pH值10.79)、S8-0.5m(pH值9.39),呈强碱性,S7位于原1号表面处理线区域,取样点临近碱洗槽,S8位于原塔料仓库,2个点位呈强碱性的土壤深度均为0-0.5m。pH值异常的原因可能是由于地块酸洗、碱洗工序管理不当及历史上发生过表面处理废水渗透现象所致。由于土壤中的pH值没有筛选值,土壤酸碱度对地块后续开发利用的影响在于施工期间对钢筋混凝土的腐蚀性,建议后期地块开发利用时关注地块内土壤腐蚀性,施工时选择合理的耐腐蚀性建筑材料。

(2) 关注污染物检出情况

本场地土壤关注污染物为重金属锌、总铬、六价铬、苯酚、氰化物、石油烃(C10-C40)

及苯并芘[a],其中六价铬、氰化物、苯并芘[a]在所有送检样品中均未被检出;苯酚在 11 个土壤样品中被检出,检出浓度低于《浙江省污染场地风险评估技术导则》(DB33/T 892-2013)中第二类用地筛选值(90mg/kg)。锌、总铬、石油烃(C10-C40)在所有样品中都被检出,检出浓度均未超过《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值或《浙江省污染场地风险评估技术导则》(DB33/T 892-2013)中商服及工业用地筛选值。

(3) 土壤初步调查结论

本次调查送检的土壤样品中各项指标的检出浓度均低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)中第二类用地筛选值或《浙江省污染场地风险评估技术导则》(DB33/T 892-2013)中商服及工业用地筛选值。该地块不属于污染地块,无需开展下一步的场地环境详细调查及风险评估工作。

2、场地内地下水样品检测结果显示:场地地下水样品各项指标均低于《地下水质量标准》(GB14848-2017)中III类水质指标限值,满足地下水III类水质标准。地块未来规划为商业工业混合用地,地下水不作为生活饮用水开发。

7.2 建议

- 1、针对该地块后续开展的土地开发利用,建议按照相关文件要求,做好建设过程中的环保监管工作。
- 2、建议在土地开发过程中若发现土壤有污染的异常迹象,如埋藏的罐、槽,恶臭的废弃物等污染痕迹时,应及时通知杭州市生态环境局富阳区分局进行现场查验。

7.3 不确定性说明

本场地环境调查以"针对性、规范性、可操作性"为基本原则,调查过程严格遵循现行场地环境调查评估相关规范、导则及其他相关技术要求,调查结果是基于场地基础信息采集、现场定位采集、实验室样品分析和检测数据评估等工作过程的专业评价,客观地反映了场地目前可获得的事实情况。但因场地水文地质复杂性、土壤异质性、污染羽不匀性等客观因素,以及人员调查访谈、监测点布设与采样、样品检测分析等不确定性因素,客观上决定了无法完全消除场地调查结果的不确定性。本次场地调查工作的不确定因素主要有以下几个方面:

1、基础信息采集阶段: 地块的历史生产情况是通过资料收集与分析,人员访谈和场地现状踏勘等方式获取尽可能详细的地块所有历史,但无法保证能够精确反应企业长

时间生产历史中所有的变动与细节,可能对调查结果产生不确定性。

- 2、点位布点阶段:由于布点采样时,企业厂房和生产设施均已拆除,无法准确地识别原有的污染痕迹,且调查采样点位空间密度有限,同时土壤存在异质情况,污染物在场地内的空间分布通常也缺乏连续性,这对调查结果反映出场地污染情况的准确性造成一定的影响。
- 3、采样与分析阶段:污染物与土壤颗粒结合的紧密程度受土壤粒径及污染物理化 学因素影响,一般情况下,土壤中细颗粒中污染物含量相对于粗颗粒中较高;其次,小 尺度范围相较于大尺度范围内污染物分布均存在差异,不同污染物在不同地层或土壤中 分布的规律差异性较大,有的污染分布呈现"锐变",有的呈现"渐变",因此,样品 采集的具体层位,易造成检出结果存在差异。

由于土壤及地下水污染的异质性与隐蔽性,任何调查都无法详细到能够排除所有风险,所以在场地开发施工之前,施工单位应组织编制相关应急预案,加强环境跟踪监测,若施工过程中出现土壤和地下水异常,应立即启动应急预案,停止施工、疏散人员、隔离异常区、设置警示标志,并立即报告主管部门,妥善处理极端情况。

本次调查结束后该场地受到二次污染或土地利用性质发生变化时应当另行开展调查评估工作。